[CF1303G] Sum of Prefix Sums - 点分治,李超线段树
给定一棵 \(n\) 个点的带点权的树,求树上的路径 \(x_1,...,x_k\) ,最大化 \(\sum_{i=1}^k ia_{x_i}\)
Solution
树上路径问题可用点分治。
考虑如何合并两条路径对每条路径,记 \(l\) 为长度(点数),\(v\) 为 \(\sum_{i=1}^l ia_{x_i}\) ,\(s\) 为 \(\sum a_i\) ,那么对于两条路径 \((l_1,v_1,s_1),(l_2,v_2,s_2)\),它们的并为 \((l_1+l_2-1,v_1+s_1l_2+v_2,s_1+s_2)\)
于是答案为 \(v_1 + v_2 + s_1l_2\),其中 \(_1\) 是和之前扫描过的有关的信息,\(_2\) 是和当前正在扫描的位置有关的信息
(之所以这样取的原因是,之后李超线段树中我们需要控制下标的区间,而 \(l\) 的范围是较小的)
对于某一次查询来说,\(v_2\) 是定值,于是查询只有一个参数 \(l_2\) ,所以现在我们要最大化 \(l_2s_1 + v_1\),不妨转化为
- 插入一条直线 \(y=ax+b\),其中 \(a=s_1,b=v_1\)
- 询问 \(x=l_2\) 与所有直线交点中最上面的那一个
标准的李超线段树模板
我又把点分敲错,数组开小
#include <bits/stdc++.h>
using namespace std;
#define int long long
const bool dbg = 0;
namespace seg {
const int N = 4e6+5;
#define lc x<<1
#define rc x<<1|1
#define mid ((l+r)>>1)
struct Node {
int a,b;
} tree[N];
void ins(int x,int l,int r,int a,int b) {
if(tree[x].a*l+tree[x].b<=a*l+b&&tree[x].a*r+tree[x].b<=a*r+b) {
tree[x].a=a,tree[x].b=b;
}
else {
if(tree[x].a*l+tree[x].b>=a*l+b&&tree[x].a*r+tree[x].b>=a*r+b) return;
if(tree[x].a*mid+tree[x].b<a*mid+b)swap(tree[x].a,a),swap(tree[x].b,b);
if(a<tree[x].a)ins(lc,l,mid,a,b);
else ins(rc,mid+1,r,a,b);
}
}
void build(int x,int l,int r) {
tree[x].a=tree[x].b=0;
if(l==r)return;
build(lc,l,mid);
build(rc,mid+1,r);
}
int query(int x,int l,int r,int p) {
int ans=tree[x].a*p+tree[x].b;
if(l==r)return ans;
if(p<=mid)ans=max(ans,query(lc,l,mid,p));
else ans=max(ans,query(rc,mid+1,r,p));
return ans;
}
};
int tot;
const int N = 300005;
int n,val[N],siz[N],vis[N],mx[N],fa[N],l[N],v[N],s[N],sz,ans;
vector <int> g[N],sta;
void dfs(int p) {
siz[p]=1;
mx[p]=0; //!!!
sta.push_back(p);
for(int q:g[p]) if(fa[p]!=q && !vis[q]) {
fa[q]=p;
dfs(q);
siz[p]+=siz[q];
mx[p]=max(mx[p],siz[q]);
}
}
void dfs1(int p) {
if(dbg) cout<<" dfs1 "<<p<<" "<<l[p]<<" "<<v[p]<<" "<<s[p]<<endl;
seg::ins(1,1,sz,s[p],v[p]);
for(int q:g[p]) if(fa[p]!=q && !vis[q]) {
l[q]=l[p]+1;
s[q]=s[p]+val[q];
v[q]=v[p]+l[q]*val[q];
dfs1(q);
}
}
void dfs2(int p) {
if(dbg) cout<<" dfs2 "<<p<<" "<<l[p]<<" "<<v[p]<<" "<<s[p]<<endl;
ans=max(ans,seg::query(1,1,sz,l[p])+v[p]);
if(dbg) cout<<" ans="<<ans<<endl;
for(int q:g[p]) if(fa[p]!=q && !vis[q]) {
l[q]=l[p]+1;
s[q]=s[p]+val[q];
v[q]=v[p]+s[q];
dfs2(q);
}
}
void solve(int p) {
fa[p]=0;
sta.clear();
dfs(p);
for(int q:sta) mx[q]=max(mx[q],(int)sta.size()-siz[q]);
int r=0,mv=1e9;
for(int q:sta) if(mv>mx[q]) r=q, mv=mx[q];
vis[r]=1;
for(int q:sta) fa[q]=0;
dfs(r); //!!!
if(dbg) cout<<"solve "<<r<<endl;
sz=sta.size();
if(dbg) cout<<" round I"<<endl;
seg::build(1,1,sz);
l[r]=1; s[r]=val[r]; v[r]=val[r];
if(dbg) cout<<" "<<l[r]<<" "<<s[r]<<" "<<v[r]<<endl;
seg::ins(1,1,sz,s[r],v[r]);
for(int i=0;i<g[r].size();i++) {
int q=g[r][i];
if(vis[q]) continue;
if(dbg) cout<<" subtree "<<q<<endl;
l[q]=1;
v[q]=val[q];
s[q]=val[q];
dfs2(q);
l[q]=2;
v[q]=val[r]+val[q]*2;
s[q]=val[r]+val[q];
dfs1(q);
}
ans=max(ans,seg::query(1,1,sz,0));
if(dbg) cout<<" ans="<<ans<<endl;
seg::build(1,1,sz);
if(dbg) cout<<" round II"<<endl;
for(int i=g[r].size()-1;i>=0;--i) {
int q=g[r][i];
if(vis[q]) continue;
if(dbg) cout<<" subtree "<<q<<endl;
l[q]=1;
v[q]=val[q];
s[q]=val[q];
dfs2(q);
l[q]=2;
v[q]=val[r]+val[q]*2;
s[q]=val[r]+val[q];
dfs1(q);
}
for(int q:g[r]) if(!vis[q]) solve(q);
}
signed main() {
//freopen("input.txt","r",stdin);
//freopen("output.txt","w",stdout);
//ios::sync_with_stdio(false);
cin>>n;
for(int i=1;i<n;i++) {
int t1,t2;
cin>>t1>>t2;
g[t1].push_back(t2);
g[t2].push_back(t1);
}
for(int i=1;i<=n;i++) cin>>val[i];
solve(1);
cout<<ans<<endl;
}
一杯茶一包烟,一个破题调一天
[CF1303G] Sum of Prefix Sums - 点分治,李超线段树的更多相关文章
- CF1303G Sum of Prefix Sums
点分治+李超树 因为题目要求的是树上所有路径,所以用点分治维护 因为在点分治的过程中相当于将树上经过当前$root$的一条路径分成了两段 那么先考虑如何计算两个数组合并后的答案 记数组$a$,$b$, ...
- Codeforces 1303G - Sum of Prefix Sums(李超线段树+点分治)
Codeforces 题面传送门 & 洛谷题面传送门 个人感觉这题称不上毒瘤. 首先看到选一条路径之类的字眼可以轻松想到点分治,也就是我们每次取原树的重心 \(r\) 并将路径分为经过重心和不 ...
- Codechef TSUM2 Sum on Tree 点分治、李超线段树
传送门 点分治模板题都不会迟早要完 发现这道题需要统计所有路径的信息,考虑点分治统计路径信息. 点分治之后,因为路径是有向的,所以对于每一条路径都有向上和向下的两种.那么如果一条向上的路径,点数为\( ...
- Codeforces Round #463 F. Escape Through Leaf (李超线段树合并)
听说正解是啥 set启发式合并+维护凸包+二分 根本不会啊 , 只会 李超线段树合并 啦 ... 题意 给你一颗有 \(n\) 个点的树 , 每个节点有两个权值 \(a_i, b_i\) . 从 \( ...
- Codeforces 1175G Yet Another Partiton Problem [DP,李超线段树]
Codeforces 思路 首先吐槽一句:partiton是个什么东西?我好像在百度翻译里面搜不到呀qwq 发现不了什么性质,那就直接上DP吧.注意到DP可以分层,所以设\(dp_i\)表示当前层,分 ...
- 李超线段树(segment[HEOI2013]-洛谷T4097)
(neng了好久好久才糊弄懂得知识点...) 一.李超线段树 在线动态维护一个二维平面直角坐标系, 支持插入一条线段, 询问与直线x = x0相交的所有线段中,交点y的最大/小值 (若有多条线段符合条 ...
- Codeforces 1175G - Yet Another Partiton Problem(李超线段树)
Codeforces 题面传送门 & 洛谷题面传送门 这是一道李超线段树的毒瘤题. 首先我们可以想到一个非常 trivial 的 DP:\(dp_{i,j}\) 表示前 \(i\) 个数划 ...
- 【BZOJ-4515】游戏 李超线段树 + 树链剖分 + 半平面交
4515: [Sdoi2016]游戏 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 304 Solved: 129[Submit][Status][ ...
- 【BZOJ-3165】Segment 李超线段树(标记永久化)
3165: [Heoi2013]Segment Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 368 Solved: 148[Submit][Sta ...
随机推荐
- 踩坑ThinkPHP5之模型对象返回的数据集如何转为数组
各位小伙伴们大家好,冷月今天在做项目的过程中呢,遇到了一个坑就是用tp5的模型操作数据库时,返回的是数据集而不是直接的数组.于是冷月就想办法如何将数据集转为数组.写下这篇博文,防止大家遇到这个坑时可以 ...
- shell使用变量的值,获取一个新的变量名的值
[root@localhost ~]# cat s2.sh #!/bin/bash color_name="red" red=31 color=`eval echo '$'&quo ...
- android手机拍照旋转的问题
android开发中,遇到过手机拍照,明明是竖着拍的,显示的结果却是横这的,困扰了很久,找了很久找了一种解决方法: ExifInterface exifInterface = new ExifInte ...
- 全志V3S 编译运行xboot笔记
目录 全志V3S 编译运行xboot笔记 1.目的 2.环境准备 3.下载 3.1 fel模式进入 3.2 sunxi-fel工具的使用 3.3 烧录 4.串口打印 5.总结 全志V3S 编译运行xb ...
- 饿了么组件--table组件自定义渲染列,同时伴有v-for和v-if情况
如题,有一个需求,列数量不固定,在一定条件下,可能会(fixedColumn, A2, A3, A4)或(fixedColumn, B2, B3)情况,其中A2, A3, A4会同时出现,B2, B3 ...
- codewars--js--Two Joggers--求最小公倍数、最大公约数
问题描述: Two Joggers Description Bob and Charles are meeting for their weekly jogging tour. They both s ...
- Netty——知识点总结
引言 Netty blablabla…… Netty 知识点
- Android eclipse环境配置
需下载软件: JDK eclipse ADT SDK JDK的下载安装: 从官网下载JDK:http://www.oracle.com/: 安装好以后还需要进行jdk的环境配置: eclipse下载安 ...
- PMP--1.6 项目经理
本节都是理论的东西,可以在管理没有思路的或者管理陷入困境的时候当做提升或解决问题的思路来看. 一.项目经理 1. 项目经理.职能经理与运营经理的区别 (1)职能经理专注于对某个职能领域或业务部门的管理 ...
- ASP.NET Core DI概述
众所周知,ASP.NET Core有一个DI框架,应用程序启动时初始化. 预定义依赖 1: IApplicationBuilder:提供了配置应用程序的请求管道机制 2:ILoggerFactory: ...