PP: Extracting statisticla graph features for accurate and efficient time series classification
Problem: TSC, time series classification;
Traditional TSC: find global similarities or local patterns/subsequence(shapelet).
We extract statistical features from VG to facilitate TSC
Introduction:
Global similarity:
the difference between TSC and other classification: deal with sequentiality property.
traditional methods: K-NN algorithm + DTW, one intrinsic issue with DTW, is that it focuses on finding global similarities. 在我看来这句话,简直是boo shit,一个距离测量只关注与全局的相似度?它应该是全部的距离都包含。
Local features:
Bag-of-patterns; SAX-VSM; shapelets-based algorithms.
Suffering:
- high computation complexity
- suboptimal classification accuracy
Time series --------> VG --------> graph features
graph features: Motif distribution, density;
Q:
- why it's called multiscale VG
- the statistical graph features: probability distributions of small motifs, assortativity and degree statistics.
much faster than Learning Shapelets and Fast Shapelet.
Future work:
1. Other useful and efficient graph features: degree distribution entropy, centrality, bipartivity, etc.
2. adopt MVG for multivariate TSC.
PP: Extracting statisticla graph features for accurate and efficient time series classification的更多相关文章
- Spark Extracting,transforming,selecting features
Spark(3) - Extracting, transforming, selecting features 官方文档链接:https://spark.apache.org/docs/2.2.0/m ...
- 论文解读(GGD)《Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination》
论文信息 论文标题:Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with ...
- PP: Triple-shapelet networks for time series classification
Problem: time series classification shapelet-based method: two issues 1. for multi-class imbalanced ...
- PP: Shallow RNNs: a method for accurate time-series classification on tiny devices
Problem: time series classification shallow RNNs: the first layer splits the input sequence and runs ...
- PP: Shape and time distortion loss for training deep time series forecasting models
Problem: time series forecasting Challenge: forecasting for non-stationary signals and multiple futu ...
- Distinctive Image Features from Scale-Invariant
http://nichol.as/papers/Lowe/Distinctive Image Features from Scale-Invariant.pdf Abstract This paper ...
- Distinctive Image Features from Scale-Invariant Keypoints(个人翻译+笔记)-介绍
Distinctive Image Features from Scale-Invariant Keypoints,这篇论文是图像识别领域SIFT算法最为经典的一篇论文,导师给布置的第一篇任务就是它. ...
- Paper: A novel method for forecasting time series based on fuzzy logic and visibility graph
Problem Forecasting time series. Other methods' drawback: even though existing methods (exponential ...
- 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...
随机推荐
- Java并发读书笔记:线程安全与互斥同步
目录 导致线程不安全的原因 什么是线程安全 不可变 绝对线程安全 相对线程安全 线程兼容 线程对立 互斥同步实现线程安全 synchronized内置锁 锁即对象 是否要释放锁 实现原理 啥是重进入? ...
- Codeforces_846
A.简单dp. #include<bits/stdc++.h> using namespace std; ],dp[][] = {}; int main() { ios::sync_wit ...
- Codeforces_794
A.统计两个guard之间的钞票数. #include<bits/stdc++.h> #define MOD 1000000009 using namespace std; int a,b ...
- C语言寒假大作战04
问题 答案 这个作业属于那个课程 https://edu.cnblogs.c0m/campus/zswxy/CST2019-4 这个作业的要求在哪里 https://edu.cnblogs.com/c ...
- Go语言实现:【剑指offer】二维数组中的查找
该题目来源于牛客网<剑指offer>专题. 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一 ...
- [Effective Java 读书笔记] 第二章 创建和销毁对象 第五条
第五条 避免创建不必要的对象 书中一开始举例: String s = new String("stringette"); // don't do this //应该使用下面,只会创 ...
- [源码分析] 从源码入手看 Flink Watermark 之传播过程
[源码分析] 从源码入手看 Flink Watermark 之传播过程 0x00 摘要 本文将通过源码分析,带领大家熟悉Flink Watermark 之传播过程,顺便也可以对Flink整体逻辑有一个 ...
- javascript 浅复制 和 深复制
如何区分深拷贝与浅拷贝,简单点来说,就是假设 B复制了A,当修改A时,看B是否会发生变化,如果B也跟着变了,说明这是浅拷贝, 如果B没变,那就是深拷贝 实现思路 1 json 深度拷贝 2 遍历递归 ...
- jQuery--dataTable 前端分页与后端分页 及遇到的问题
(1)区别 前端分页:一次性把所有数据全都放在前端,由前端进行处理:适合请求的数据量不大的情况 后端分页:服务器模式,所有的分页,搜索,排序等操作在服务器端完成,然后前端去请求数据:适合量大的情况 ( ...
- cir from c# 托管堆和垃圾回收
1,托管堆基础 调用IL的newobj 为资源分配内存 初始化内存,设置其初始状态并使资源可用.类型的实列构造器负责设置初始化状态 访问类型的成员来使用资源 摧毁状态进行清理 释放内存//垃圾回收期负 ...