Euler Sums系列(一)
\[\Large\sum_{n=1}^{\infty} \frac{H_{n}}{2^nn^4}\]
\(\Large\mathbf{Solution:}\)
Let
\[\mathcal{S}=\sum^\infty_{n=1}\frac{H_n}{n^42^n}\]
We first consider a slightly different yet related sum. The main idea is to solve this sum with two different methods, one of which involves the sum in question. This then allows us to determine the value of the desired sum.
\[\begin{align*}
&\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}
=\frac{1}{6}\sum^\infty_{n=1}(-1)^{n-1}H_n\int^1_0x^{n-1}\ln^3{x}\ {\rm d}x
=\frac{1}{6}\int^1_0\frac{\ln^3{x}\ln(1+x)}{x(1+x)}{\rm d}x\\
=&\frac{1}{6}\int^1_0\frac{\ln^3{x}\ln(1+x)}{x}{\rm d}x-\frac{1}{6}\int^1_0\frac{\ln^3{x}\ln(1+x)}{1+x}{\rm d}x
=\frac{1}{6}\sum^\infty_{n=1}\frac{(-1)^{n-1}}{n}\int^1_0x^{n-1}\ln^3{x}\ {\rm d}x\\
-&\frac{1}{6}\int^2_1\frac{\ln{x}\ln^3(x-1)}{x}{\rm d}x
=\sum^\infty_{n=1}\frac{(-1)^{n}}{n^5}+\int^1_{\frac{1}{2}}\frac{\ln{x}\ln^3(1-x)}{6x}-\int^1_{\frac{1}{2}}\frac{\ln^2{x}\ln^2(1-x)}{2x}{\rm d}x\\+&\int^1_{\frac{1}{2}}\frac{\ln^3{x}\ln(1-x)}{2x}{\rm d}x-\int^1_{\frac{1}{2}}\frac{\ln^4{x}}{6x}{\rm d}x
=-\frac{15}{16}\zeta(5)+\mathcal{I}_1-\mathcal{I}_2+\mathcal{I}_3-\mathcal{I}_4
\end{align*}\]
Starting with the easiest integral,
\[\begin{align*}
\mathcal{I}_4=\frac{1}{30}\ln^5{2}
\end{align*}\]
For \(\mathcal{I}_3\),
\[\begin{align*}
\mathcal{I}_3
=&-\frac{1}{2}\sum^\infty_{n=1}\frac{1}{n}\int^1_{\frac{1}{2}}x^{n-1}\ln^3{x}\ {\rm d}x
=-\frac{1}{2}\sum^\infty_{n=1}\frac{1}{n}\frac{\partial^3}{\partial n^3}\left(\frac{1}{n}-\frac{1}{n2^n}\right)\\
=&\sum^\infty_{n=1}\left(\frac{3}{n^5}-\frac{3}{n^52^n}-\frac{3\ln{2}}{n^42^n}-\frac{3\ln^2{2}}{n^32^{n+1}}-\frac{\ln^3{2}}{n^22^{n+1}}\right)\\
=&3\zeta(5)-3{\rm Li}_5\left(\dfrac{1}{2}\right)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}-\frac{3}{2}\ln^2{2}\left(\frac{7}{8}\zeta(3)-\frac{\pi^2}{12}\ln{2}+\frac{1}{6}\ln^3{2}\right)\\&-\frac{1}{2}\ln^3{2}\left(\frac{\pi^2}{12}-\frac{1}{2}\ln^2{2}\right)\\
=&3\zeta(5)-3{\rm Li}_5\left(\dfrac{1}{2}\right)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}-\frac{21}{16}\zeta(3)\ln^2{2}+\frac{\pi^2}{12}\ln^3{2}
\end{align*}\]
For \(\mathcal{I}_2\),
\[\begin{align*}
\mathcal{I}_2
=&\frac{1}{6}\ln^5{2}+\frac{1}{3}\int^1_{\frac{1}{2}}\frac{\ln^3{x}\ln(1-x)}{1-x}{\rm d}x
=\frac{1}{6}\ln^5{2}-\frac{1}{3}\sum^\infty_{n=1}H_n\frac{\partial^3}{\partial n^3}\left(\frac{1}{n+1}-\frac{1}{(n+1)2^{n+1}}\right)\\
=&\frac{1}{6}\ln^5{2}+\sum^\infty_{n=1}\frac{2H_n}{(n+1)^4}-\sum^\infty_{n=1}\frac{2H_n}{(n+1)^42^{n+1}}-\sum^\infty_{n=1}\frac{2\ln{2}H_n}{(n+1)^32^{n+1}}\\
&-\sum^\infty_{n=1}\frac{\ln^2{2}H_n}{(n+1)^22^{n+1}}-\sum^\infty_{n=1}\frac{\ln^3{2}H_n}{3(n+1)2^{n+1}}\\
=&\frac{1}{6}\ln^5{2}+4\zeta(5)-\frac{\pi^2}{3}\zeta(3)-2\mathcal{S}+2{\rm Li}_5\left(\dfrac{1}{2}\right)-\frac{\pi^4}{360}\ln{2}+\frac{1}{4}\zeta(3)\ln^2{2}-\frac{1}{12}\ln^5{2}\\
&-\frac{1}{8}\zeta(3)\ln^2{2}+\frac{1}{6}\ln^5{2}-\frac{1}{6}\ln^5{2}\\
=&-2\mathcal{S}+2{\rm Li}_5\left(\dfrac{1}{2}\right)+4\zeta(5)-\frac{\pi^4}{360}\ln{2}+\frac{1}{8}\zeta(3)\ln^2{2}-\frac{\pi^2}{3}\zeta(3)+\frac{1}{12}\ln^5{2}
\end{align*}\]
For \(\mathcal{I}_1\),
\[\begin{align*}
\mathcal{I}_1
=&\frac{1}{6}\int^{\frac{1}{2}}_0\frac{\ln^3{x}\ln(1-x)}{1-x}{\rm d}x
=-\frac{1}{6}\sum^\infty_{n=1}H_n\frac{\partial^3}{\partial n^3}\left(\frac{1}{(n+1)2^{n+1}}\right)\\
=&\sum^\infty_{n=1}\frac{H_n}{(n+1)^42^{n+1}}+\sum^\infty_{n=1}\frac{\ln{2}H_n}{(n+1)^32^{n+1}}+\sum^\infty_{n=1}\frac{\ln^2{2}H_n}{2(n+1)^22^{n+1}}+\sum^\infty_{n=1}\frac{\ln^3{2}H_n}{6(n+1)2^{n+1}}\\
=&\mathcal{S}-{\rm Li}_5\left(\dfrac{1}{2}\right)+\frac{\pi^4}{720}\ln{2}-\frac{1}{16}\zeta(3)\ln^2{2}+\frac{1}{24}\ln^5{2}
\end{align*}\]
Combining these four integrals as \(\mathcal{I}_1-\mathcal{I}_2+\mathcal{I}_3-\mathcal{I}_4\) and \(\displaystyle -\dfrac{15}{16}\zeta(5)\) gives
\[\begin{align*}
\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}
=&3\mathcal{S}-6{\rm Li}_5\left(\dfrac{1}{2}\right)-\frac{31}{16}\zeta(5)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}+\frac{\pi^4}{240}\ln{2}\\&-\frac{3}{2}\zeta(3)\ln^2{2}+\frac{\pi^2}{3}\zeta(3)+\frac{\pi^2}{12}\ln^3{2}-\frac{3}{40}\ln^5{2}
\end{align*}\]
But consider \(\displaystyle f(z)=\frac{\pi\csc(\pi z)(\gamma+\psi_0(-z))}{z^4}\). At the positive integers,
\[\sum^\infty_{n=1}{\rm Res}(f,n)=\sum^\infty_{n=1}\operatorname*{Res}_{z=n}\left[\frac{(-1)^n}{z^4(z-n)^2}+\frac{(-1)^nH_n}{z^4(z-n)}\right]=\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}+\frac{15}{4}\zeta(5)\]
At \(z=0\),
\[\begin{align*}
{\rm Res}(f,0)
&=[z^3]\left(\frac{1}{z}+\frac{\pi^2}{6}z+\frac{7\pi^4}{360}z^3\right)\left(\frac{1}{z}-\frac{\pi^2}{6}z-\zeta(3)z^2-\frac{\pi^4}{90}z^3-\zeta(5)z^4\right)\\
&=-\zeta(5)-\frac{\pi^2}{6}\zeta(3)
\end{align*}\]
At the negative integers,
\[\begin{align*}
\sum^\infty_{n=1}{\rm Res}(f,-n)
&=\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}+\frac{15}{16}\zeta(5)
\end{align*}\]
Since the sum of the residues is zero,
\[\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}=-\frac{59}{32}\zeta(5)+\frac{\pi^2}{12}\zeta(3)\]
Hence,
\[\begin{align*}
-\frac{59}{32}\zeta(5)+\frac{\pi^2}{12}\zeta(3)
=&3\mathcal{S}-6{\rm Li}_5\left(\dfrac{1}{2}\right)-\frac{31}{16}\zeta(5)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}+\frac{\pi^4}{240}\ln{2}\\&-\frac{3}{2}\zeta(3)\ln^2{2}+\frac{\pi^2}{3}\zeta(3)+\frac{\pi^2}{12}\ln^3{2}-\frac{3}{40}\ln^5{2}
\end{align*}\]
This implies that
\[\boxed{\begin{align*}
{\sum^\infty_{n=1}\frac{H_n}{n^42^n}}
{=}&\color{blue}{2{\rm Li}_5\left(\dfrac{1}{2}\right)+\frac{1}{32}\zeta(5)+{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}-\frac{\pi^4}{720}\ln{2}+\frac{1}{2}\zeta(3)\ln^2{2}}\\&\color{blue}{-\frac{\pi^2}{12}\zeta(3)-\frac{\pi^2}{36}\ln^3{2}+\frac{1}{40}\ln^5{2}}
\end{align*}}\]
Euler Sums系列(一)的更多相关文章
- Euler Sums系列(六)
\[\Large\displaystyle \sum_{n=1}^{\infty}\frac{H_{2n}}{n(6n+1)}\] \(\Large\mathbf{Solution:}\) Let \ ...
- Euler Sums系列(五)
\[\Large\displaystyle \sum_{n=1}^{\infty} \frac{\widetilde{H_n}}{n^{3}}\] where \(\widetilde{H_n}\) ...
- Euler Sums系列(四)
\[\Large\displaystyle \sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}=\mathbf{G}-\frac{\pi}{2}\ln(2)\] \(\ ...
- Euler Sums系列(三)
\[\Large\sum_{n=1}^{\infty}\frac{\left(H_{n}^{(2)}\right)^{2}}{n^{2}}=\frac{19}{24}\zeta(6)+\zeta^{2 ...
- Euler Sums系列(二)
\[\Large\sum_{n=0}^\infty \frac{H_{2n+1}}{(2n+1)^2}=\frac{21}{16}\zeta(3)\] \(\Large\mathbf{Proof:}\ ...
- xorm -sum 系列方法实例
求和数据可以使用Sum, SumInt, Sums 和 SumsInt 四个方法,Sums系列方法的参数为struct的指针并且成为查询条件. package main import ( " ...
- 一个包含arctan与arctanh的积分
\[\Large\int_0^1\frac{\arctan x \,\operatorname{arctanh} x\, \ln x}{x}\mathrm{d}x=\frac{\pi^2}{16}\m ...
- Project Euler 106:Special subset sums: meta-testing 特殊的子集和:元检验
Special subset sums: meta-testing Let S(A) represent the sum of elements in set A of size n. We shal ...
- Project Euler P105:Special subset sums: testing 特殊的子集和 检验
Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...
随机推荐
- batchsize用法 以及实现前向运算的矩阵乘法方式
batchsize用法 以及实现前向运算的矩阵乘法方式 待办 使用batchsize可以把矩阵缩小,采用矩阵乘法的形式可以一次计算多个经过神经网络的结果,然后通过交叉熵进行计算总的损失得到结果. 所以 ...
- oracle dataguard配置
1.archivelog设置:(存档模式) 2.standy controlfile 设置: alter database create standby controlfile as '/data/o ...
- nginx的错误处理
以下是针对nginx发生错误的处理方案(将会持续更新) 遇到 nginx: [error] invalid PID number "" in "/var/run/ngin ...
- BigInteger和BigDecimal的基本用法
整型大数 BigInteger: import java.math.BigInteger; import java.util.Scanner; public class Main { public s ...
- Thymeleaf th:include,th:replace使用
来自:https://blog.csdn.net/believe__sss/article/details/79992408
- win10显示“没有有效的IP地址”
可能你没有新建该宽带连接!!!(本人就是蠢到如此地步了_(:з)∠)_)
- Go_sqlx和占位符
sqlx使用 第三方库sqlx能够简化操作,提高开发效率. 安装 go get github.com/jmoiron/sqlx package main import ( "fmt" ...
- 【常识】常用RGB颜色对照表
RGB颜色表 白色:rgb(255,255,255) 黑色:rgb(0,0,0) 红色:rgb(255,0,0) 绿色:rgb(0,255,0) 蓝色:rgb(0,0,255) 青色:rgb(0,25 ...
- MinGW dll导入导出类
dll不仅可以导入导出函数,还可以导入导出类.这篇文章就来介绍如何将类导入dll中并导出. 首先我们建立一个名为dll.cpp的文件(又是这种破名字),里面写上: #include <iostr ...
- idea中运行ssm 或springboot项目时,project Structure的配置
ctrl+alt+shift+s进入 project Structure 首先是project选项 Modules 标明source testsource 以及 resource 和 testreso ...