\[\Large\sum_{n=1}^{\infty} \frac{H_{n}}{2^nn^4}\]


\(\Large\mathbf{Solution:}\)
Let
\[\mathcal{S}=\sum^\infty_{n=1}\frac{H_n}{n^42^n}\]
We first consider a slightly different yet related sum. The main idea is to solve this sum with two different methods, one of which involves the sum in question. This then allows us to determine the value of the desired sum.
\[\begin{align*}
&\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}
=\frac{1}{6}\sum^\infty_{n=1}(-1)^{n-1}H_n\int^1_0x^{n-1}\ln^3{x}\ {\rm d}x
=\frac{1}{6}\int^1_0\frac{\ln^3{x}\ln(1+x)}{x(1+x)}{\rm d}x\\
=&\frac{1}{6}\int^1_0\frac{\ln^3{x}\ln(1+x)}{x}{\rm d}x-\frac{1}{6}\int^1_0\frac{\ln^3{x}\ln(1+x)}{1+x}{\rm d}x
=\frac{1}{6}\sum^\infty_{n=1}\frac{(-1)^{n-1}}{n}\int^1_0x^{n-1}\ln^3{x}\ {\rm d}x\\
-&\frac{1}{6}\int^2_1\frac{\ln{x}\ln^3(x-1)}{x}{\rm d}x
=\sum^\infty_{n=1}\frac{(-1)^{n}}{n^5}+\int^1_{\frac{1}{2}}\frac{\ln{x}\ln^3(1-x)}{6x}-\int^1_{\frac{1}{2}}\frac{\ln^2{x}\ln^2(1-x)}{2x}{\rm d}x\\+&\int^1_{\frac{1}{2}}\frac{\ln^3{x}\ln(1-x)}{2x}{\rm d}x-\int^1_{\frac{1}{2}}\frac{\ln^4{x}}{6x}{\rm d}x
=-\frac{15}{16}\zeta(5)+\mathcal{I}_1-\mathcal{I}_2+\mathcal{I}_3-\mathcal{I}_4
\end{align*}\]
Starting with the easiest integral,
\[\begin{align*}
\mathcal{I}_4=\frac{1}{30}\ln^5{2}
\end{align*}\]
For \(\mathcal{I}_3\),
\[\begin{align*}
\mathcal{I}_3
=&-\frac{1}{2}\sum^\infty_{n=1}\frac{1}{n}\int^1_{\frac{1}{2}}x^{n-1}\ln^3{x}\ {\rm d}x
=-\frac{1}{2}\sum^\infty_{n=1}\frac{1}{n}\frac{\partial^3}{\partial n^3}\left(\frac{1}{n}-\frac{1}{n2^n}\right)\\
=&\sum^\infty_{n=1}\left(\frac{3}{n^5}-\frac{3}{n^52^n}-\frac{3\ln{2}}{n^42^n}-\frac{3\ln^2{2}}{n^32^{n+1}}-\frac{\ln^3{2}}{n^22^{n+1}}\right)\\
=&3\zeta(5)-3{\rm Li}_5\left(\dfrac{1}{2}\right)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}-\frac{3}{2}\ln^2{2}\left(\frac{7}{8}\zeta(3)-\frac{\pi^2}{12}\ln{2}+\frac{1}{6}\ln^3{2}\right)\\&-\frac{1}{2}\ln^3{2}\left(\frac{\pi^2}{12}-\frac{1}{2}\ln^2{2}\right)\\
=&3\zeta(5)-3{\rm Li}_5\left(\dfrac{1}{2}\right)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}-\frac{21}{16}\zeta(3)\ln^2{2}+\frac{\pi^2}{12}\ln^3{2}
\end{align*}\]
For \(\mathcal{I}_2\),
\[\begin{align*}
\mathcal{I}_2
=&\frac{1}{6}\ln^5{2}+\frac{1}{3}\int^1_{\frac{1}{2}}\frac{\ln^3{x}\ln(1-x)}{1-x}{\rm d}x
=\frac{1}{6}\ln^5{2}-\frac{1}{3}\sum^\infty_{n=1}H_n\frac{\partial^3}{\partial n^3}\left(\frac{1}{n+1}-\frac{1}{(n+1)2^{n+1}}\right)\\
=&\frac{1}{6}\ln^5{2}+\sum^\infty_{n=1}\frac{2H_n}{(n+1)^4}-\sum^\infty_{n=1}\frac{2H_n}{(n+1)^42^{n+1}}-\sum^\infty_{n=1}\frac{2\ln{2}H_n}{(n+1)^32^{n+1}}\\
&-\sum^\infty_{n=1}\frac{\ln^2{2}H_n}{(n+1)^22^{n+1}}-\sum^\infty_{n=1}\frac{\ln^3{2}H_n}{3(n+1)2^{n+1}}\\
=&\frac{1}{6}\ln^5{2}+4\zeta(5)-\frac{\pi^2}{3}\zeta(3)-2\mathcal{S}+2{\rm Li}_5\left(\dfrac{1}{2}\right)-\frac{\pi^4}{360}\ln{2}+\frac{1}{4}\zeta(3)\ln^2{2}-\frac{1}{12}\ln^5{2}\\
&-\frac{1}{8}\zeta(3)\ln^2{2}+\frac{1}{6}\ln^5{2}-\frac{1}{6}\ln^5{2}\\
=&-2\mathcal{S}+2{\rm Li}_5\left(\dfrac{1}{2}\right)+4\zeta(5)-\frac{\pi^4}{360}\ln{2}+\frac{1}{8}\zeta(3)\ln^2{2}-\frac{\pi^2}{3}\zeta(3)+\frac{1}{12}\ln^5{2}
\end{align*}\]
For \(\mathcal{I}_1\),
\[\begin{align*}
\mathcal{I}_1
=&\frac{1}{6}\int^{\frac{1}{2}}_0\frac{\ln^3{x}\ln(1-x)}{1-x}{\rm d}x
=-\frac{1}{6}\sum^\infty_{n=1}H_n\frac{\partial^3}{\partial n^3}\left(\frac{1}{(n+1)2^{n+1}}\right)\\
=&\sum^\infty_{n=1}\frac{H_n}{(n+1)^42^{n+1}}+\sum^\infty_{n=1}\frac{\ln{2}H_n}{(n+1)^32^{n+1}}+\sum^\infty_{n=1}\frac{\ln^2{2}H_n}{2(n+1)^22^{n+1}}+\sum^\infty_{n=1}\frac{\ln^3{2}H_n}{6(n+1)2^{n+1}}\\
=&\mathcal{S}-{\rm Li}_5\left(\dfrac{1}{2}\right)+\frac{\pi^4}{720}\ln{2}-\frac{1}{16}\zeta(3)\ln^2{2}+\frac{1}{24}\ln^5{2}
\end{align*}\]
Combining these four integrals as \(\mathcal{I}_1-\mathcal{I}_2+\mathcal{I}_3-\mathcal{I}_4\) and \(\displaystyle -\dfrac{15}{16}\zeta(5)\) gives
\[\begin{align*}
\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}
=&3\mathcal{S}-6{\rm Li}_5\left(\dfrac{1}{2}\right)-\frac{31}{16}\zeta(5)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}+\frac{\pi^4}{240}\ln{2}\\&-\frac{3}{2}\zeta(3)\ln^2{2}+\frac{\pi^2}{3}\zeta(3)+\frac{\pi^2}{12}\ln^3{2}-\frac{3}{40}\ln^5{2}
\end{align*}\]
But consider \(\displaystyle f(z)=\frac{\pi\csc(\pi z)(\gamma+\psi_0(-z))}{z^4}\). At the positive integers,
\[\sum^\infty_{n=1}{\rm Res}(f,n)=\sum^\infty_{n=1}\operatorname*{Res}_{z=n}\left[\frac{(-1)^n}{z^4(z-n)^2}+\frac{(-1)^nH_n}{z^4(z-n)}\right]=\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}+\frac{15}{4}\zeta(5)\]
At \(z=0\),
\[\begin{align*}
{\rm Res}(f,0)
&=[z^3]\left(\frac{1}{z}+\frac{\pi^2}{6}z+\frac{7\pi^4}{360}z^3\right)\left(\frac{1}{z}-\frac{\pi^2}{6}z-\zeta(3)z^2-\frac{\pi^4}{90}z^3-\zeta(5)z^4\right)\\
&=-\zeta(5)-\frac{\pi^2}{6}\zeta(3)
\end{align*}\]
At the negative integers,
\[\begin{align*}
\sum^\infty_{n=1}{\rm Res}(f,-n)
&=\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}+\frac{15}{16}\zeta(5)
\end{align*}\]
Since the sum of the residues is zero,
\[\sum^\infty_{n=1}\frac{(-1)^nH_n}{n^4}=-\frac{59}{32}\zeta(5)+\frac{\pi^2}{12}\zeta(3)\]
Hence,
\[\begin{align*}
-\frac{59}{32}\zeta(5)+\frac{\pi^2}{12}\zeta(3)
=&3\mathcal{S}-6{\rm Li}_5\left(\dfrac{1}{2}\right)-\frac{31}{16}\zeta(5)-3{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}+\frac{\pi^4}{240}\ln{2}\\&-\frac{3}{2}\zeta(3)\ln^2{2}+\frac{\pi^2}{3}\zeta(3)+\frac{\pi^2}{12}\ln^3{2}-\frac{3}{40}\ln^5{2}
\end{align*}\]
This implies that
\[\boxed{\begin{align*}
{\sum^\infty_{n=1}\frac{H_n}{n^42^n}}
{=}&\color{blue}{2{\rm Li}_5\left(\dfrac{1}{2}\right)+\frac{1}{32}\zeta(5)+{\rm Li}_4\left(\dfrac{1}{2}\right)\ln{2}-\frac{\pi^4}{720}\ln{2}+\frac{1}{2}\zeta(3)\ln^2{2}}\\&\color{blue}{-\frac{\pi^2}{12}\zeta(3)-\frac{\pi^2}{36}\ln^3{2}+\frac{1}{40}\ln^5{2}}
\end{align*}}\]

Euler Sums系列(一)的更多相关文章

  1. Euler Sums系列(六)

    \[\Large\displaystyle \sum_{n=1}^{\infty}\frac{H_{2n}}{n(6n+1)}\] \(\Large\mathbf{Solution:}\) Let \ ...

  2. Euler Sums系列(五)

    \[\Large\displaystyle \sum_{n=1}^{\infty} \frac{\widetilde{H_n}}{n^{3}}\] where \(\widetilde{H_n}\) ...

  3. Euler Sums系列(四)

    \[\Large\displaystyle \sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}=\mathbf{G}-\frac{\pi}{2}\ln(2)\] \(\ ...

  4. Euler Sums系列(三)

    \[\Large\sum_{n=1}^{\infty}\frac{\left(H_{n}^{(2)}\right)^{2}}{n^{2}}=\frac{19}{24}\zeta(6)+\zeta^{2 ...

  5. Euler Sums系列(二)

    \[\Large\sum_{n=0}^\infty \frac{H_{2n+1}}{(2n+1)^2}=\frac{21}{16}\zeta(3)\] \(\Large\mathbf{Proof:}\ ...

  6. xorm -sum 系列方法实例

    求和数据可以使用Sum, SumInt, Sums 和 SumsInt 四个方法,Sums系列方法的参数为struct的指针并且成为查询条件. package main import ( " ...

  7. 一个包含arctan与arctanh的积分

    \[\Large\int_0^1\frac{\arctan x \,\operatorname{arctanh} x\, \ln x}{x}\mathrm{d}x=\frac{\pi^2}{16}\m ...

  8. Project Euler 106:Special subset sums: meta-testing 特殊的子集和:元检验

    Special subset sums: meta-testing Let S(A) represent the sum of elements in set A of size n. We shal ...

  9. Project Euler P105:Special subset sums: testing 特殊的子集和 检验

    Special subset sums: testing Let S(A) represent the sum of elements in set A of size n. We shall cal ...

随机推荐

  1. 杭电oj————2057(java)

    question:A+ B again 思路:额,没啥思路/捂脸,用java的long包里的方法,很简单,只是有几次WA,有几点要注意一下 注意:如果数字有加号要删除掉,这里用到了正则表达式“\\+” ...

  2. 小匠第二周期打卡笔记-Task04

    一.机器翻译及相关技术 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经网络翻译(NMT). 主要特征:输出是单词序列而不是单个单词.输出序列的长度可能与 ...

  3. 苹果cms10 官方QQ微信防红防封代码

     代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF- ...

  4. protel99se无法添加库的解决方法

    protel99se是很老也很实用的的一门电类专业需要用到的软件,开发时面向XP,对于win7来说存在一定的不兼容性,导致无法添加新的库,本经验为此介绍解决方法.最全,末尾解决win7 32bit 6 ...

  5. Linux MYSQL安装指南

    安装环境:系统是 centos6.5 1.下载 下载地址:http://dev.mysql.com/downloads/mysql/5.6.html#downloads 下载版本:我这里选择的5.6. ...

  6. Idea实用小Tips

    设置keymap 自己根据习惯选择keymap(键位) 插件安装 ###省去set.get方法以及基于注解的日志框架 lombok plugin ###找bug用的 FindBugs-IDEA ### ...

  7. 如何在Word中批量选中特定文本

    如何在Word中批量选中特定文本 举个例子,我们对如下文本进行操作,将文本中所有的“1111111”标红,所有的“2222222”标绿,所有的“3333333”标蓝 在Word中找到“查找”下的“高级 ...

  8. Web设计精髓(转)

    作者:zhouwenqi  地址:http://www.zhouwenqi.com/blog/board_43.html 这篇文章说实际问题的,所以不多强调,下面是我总结的一些比较突出的细节问题,而且 ...

  9. bzoj1690:[Usaco2007 Dec]奶牛的旅行 (分数规划 && 二分 && spfa)

    用dfs优化的spfa判环很快啦 分数规划的题目啦 二分寻找最优值,用spfa判断能不能使 Σ(mid * t - p) > 0 最优的情况只能有一个环 因为如果有两个环,两个环都可以作为奶牛的 ...

  10. Servlet文件上传下载

    今天我们来学习Servlet文件上传下载 Servlet文件上传主要是使用了ServletInputStream读取流的方法,其读取方法与普通的文件流相同. 一.文件上传相关原理 第一步,构建一个up ...