[IOI2005]河流
Description
Solution
一道树形dp的题。
首先考虑转移,很简单,就是这个点做不做伐木场。为了方便转移,我们定义状态为\(f_{i,j,k}\)表示点\(i\)及其兄弟的子树中,选了\(k\)个伐木场,且\(j\)是点\(i\)的父亲中距离点\(i\)最近的那个伐木场,这时的总花费。
转移就比较好写了:
f_{i,j,k} = min\{ f_{son_i, i, l} + f_{bro_i, j, k-l-1} \} \mbox{(选i)}
\]
同时,为了方便这样转移,我们采用左儿子右兄弟法存树。
Code
#include <cstdio>
#include <cstring>
#include <algorithm>
const int N = 100 + 10;
const int M = 2*N;
const int INF = 0x7f7f7f7f;
int ls[N], rs[N], dep[N], w[N], fa[N];
int n, K;
int que[N], tot;
int f[N][N][N];
void dfs(int x, int deep) {
dep[x] += deep;
que[++tot] = x;
int i = ls[x];
while (i) {
dfs(i, dep[x]);
i = rs[i];
}
}
int main() {
memset(fa, -1, sizeof fa);
memset(f, 0x7f, sizeof f);
memset(f[0], 0, sizeof f[0]);
scanf("%d%d", &n, &K);
for (int i = 2, v, d; i <= n+1; ++i) {
scanf("%d%d%d", &w[i], &v, &d);
++v;
rs[i] = ls[v];
ls[v] = i;
dep[i] = d;
fa[i] = v;
}
dfs(1, 0);
for (int i = n+1; i > 1; --i) {
int &x = que[i];
for (int j = fa[x]; j != -1; j = fa[j]) {
for (int k = 0; k <= K; ++k) {
for (int l = 0; l <= k; ++l) { // not choose i
if (f[ls[x]][j][l] < INF && f[rs[x]][j][l] < INF)
f[x][j][k] = std::min(f[x][j][k], f[ls[x]][j][l] + f[rs[x]][j][k-l] + w[x] * (dep[x] - dep[j]));
}
for (int l = 0; l < k; ++l) { // choose i
if (f[ls[x]][x][l] < INF && f[rs[x]][j][k-l-1] < INF)
f[x][j][k] = std::min(f[x][j][k], f[ls[x]][x][l] + f[rs[x]][j][k-l-1]);
}
}
}
}
printf("%d\n", f[ls[1]][1][K]);
return 0;
}
[IOI2005]河流的更多相关文章
- 3354 [IOI2005]河流
题目描述 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海.这条大河的入海口处有一个村庄——名叫 ...
- 洛谷3354(IOI2005)河流——“承诺”
题目:https://www.luogu.org/problemnew/show/P3354 虽说是几个月前曾经讲过的题,但没有题解而自己(花了两个多小时)A了好高兴!!! 这是一个很好的套路:“承诺 ...
- dp式子100个……
1. 资源问题1-----机器分配问题F[I,j]:=max(f[i-1,k]+w[i,j-k]) 2. 资源问题2------01背包问题F[I,j]:=max(f[i- ...
- dp方程
1. 资源问题1 -----机器分配问题 F[I,j]:=max(f[i-1,k]+w[i,j-k]) 2. 资源问题2 ------01背包问题 F[I,j]:=ma ...
- [LUOGU] P3354 [IOI2005]Riv 河流
题目描述 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海.这条大河的入海口处有一个村庄--名叫 ...
- BZOJ.1812.[IOI2005]Riv 河流(树形背包)
BZOJ 洛谷 这个数据范围..考虑暴力一些把各种信息都记下来.不妨直接令\(f[i][j][k][0/1]\)表示当前为点\(i\),离\(i\)最近的建了伐木场的\(i\)的祖先为\(j\),\( ...
- [IOI2005]River 河流
题目大意: 给定n个点的有根树,每条边有边权,每个点有点权w, 你要在k个点上建立伐木场,对于每个没有建伐木场的点x,令与它最近的祖先.有伐木场的点,为y,你需要支付dis(x,y)*w[x]的代价. ...
- 洛谷P3354 Riv河流 [IOI2005] 树型dp
正解:树型dp 解题报告: 传送门! 简要题意:有棵树,每个节点有个权值w,要求选k个节点,最大化∑dis*w,其中如果某个节点到根的路径上选了别的节点,dis指的是到达那个节点的距离 首先这个一看就 ...
- P3354 [IOI2005]Riv 河流
树形dp,设f[i][j][k]表示第i个点的子树中选择j个点作为伐木场,而且k是建了伐木场的最浅的i的祖先的情况下,最小的收益. 这种题还要练一下,咕咕 然后转移可以n4方做. // luogu-j ...
随机推荐
- 1315E Double Elimination DP 01枚举状态和倍增思想
E. Double Elimination DP 01枚举状态和倍增思想 题意 参考DOTA2双败赛制,一共有\(2^n\)个队打n轮 其中你有k喜欢的队伍,由你掌控比赛的输赢请问比赛中包含你喜欢的队 ...
- C++野指针的存在方式和误区
1. char* x;这样的一定是野指针,指针声明时要直接初始化!或者置null也行! 2. int main() { char *x=new char; delete x; cout<< ...
- pip问题:Traceback (most recent call last): File "/usr/bin/pip", line 9, in
源作者blog https://blog.csdn.net/vmxhc1314/article/details/81869676 编辑提示的文件,进行更改即可. 解决方法: 将 /usr/bin/pi ...
- mysql 视图 触发器 存储过程 函数事务 索引
mysql 视图 触发器 存储过程 函数事务 索引 视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集,并可以将其当 ...
- 跨域请求问题:CORS
1.编写过滤器类:需要实现Filter接口,并重写三个方法: (1)先设置字符编码: request.setCharacterEncoding("utf-8"); response ...
- 测试用例与PUCCH
- luogu P2158 [SDOI2008]仪仗队 (欧拉函数)
欧拉函数裸题 可惜我太久没做题忘了欧拉函数是什么了... 注意判断一下n = 1的情况就好了 #include <cstdio> using namespace std; ; typede ...
- 文本harry potter的字符统计
实现计算文件中字符的占比和不同单词的个数两项功能,首先将文本文件按行导入到程序中,再通过charAT()函数来实现对单个字符的操作,并用集合来统计字符总数以及不同的字符的个数,进而输出各个字符的个数以 ...
- 【PAT甲级】1118 Birds in Forest (25分)(并查集)
题意: 输入一个正整数N(<=10000),接着输入N行数字每行包括一个正整数K和K个正整数,表示这K只鸟是同一棵树上的.输出最多可能有几棵树以及一共有多少只鸟.接着输入一个正整数Q,接着输入Q ...
- Pytest学习9-常用插件
pytest-django:为django应用程序编写测试. pytest-twisted:为twisted应用程序编写测试,启动反应堆并处理测试函数的延迟. pytest-cov:覆盖率报告,与分布 ...