IOU

在目标检测算法中,交并比Intersection-over-Union,IoU是一个流行的评测方式,是指产生的候选框candidate bound与原标记框ground truth bound的交叠率,即它们的交集与并集的比值。最理想情况是完全重叠,即比值为1。一般来说,这个score > 0.5 就可以被认为一个不错的结果了。

脚本实现:

def compute_iou(rec1, rec2):
"""
computing IoU:
param rec1: (y0, x0, y1, x1), which reflects (top, left, bottom, right)
param rec2: (y0, x0, y1, x1)
return: scala value of IoU
"""
# computing area of each rectangles
S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
# computing the sum_area
sum_area = S_rec1 + S_rec2
# find the each edge of intersect rectangle
left_line = max(rec1[1], rec2[1])
right_line = min(rec1[3], rec2[3])
top_line = max(rec1[0], rec2[0])
bottom_line = min(rec1[2], rec2[2])
# judge if there is an intersect
if left_line >= right_line or top_line >= bottom_line:
return 0
else:
intersect = (right_line - left_line) * (bottom_line - top_line)
return (intersect / (sum_area - intersect))*1.0

mAP

ROC

AUC

模型评测之IoU,mAP,ROC,AUC的更多相关文章

  1. 评价目标检测(object detection)模型的参数:IOU,AP,mAP

    首先我们为什么要使用这些呢? 举个简单的例子,假设我们图像里面只有1个目标,但是定位出来10个框,1个正确的,9个错误的,那么你要按(识别出来的正确的目标/总的正确目标)来算,正确率100%,但是其实 ...

  2. ROC AUC

    1.什么是性能度量? 我们都知道机器学习要建模,但是对于模型性能的好坏(即模型的泛化能力),我们并不知道是怎样的,很可能这个模型就是一个差的模型,泛化能力弱,对测试集不能很好的预测或分类.那么如何知道 ...

  3. 一文让你彻底理解准确率,精准率,召回率,真正率,假正率,ROC/AUC

    参考资料:https://zhuanlan.zhihu.com/p/46714763 ROC/AUC作为机器学习的评估指标非常重要,也是面试中经常出现的问题(80%都会问到).其实,理解它并不是非常难 ...

  4. 5、处理模型数据ModelAndView、Map、Model以及@SessionAttributes注解

    Spring MVC提供了以下几种途径输出模型数据 —— ModelAndView: 处理方法返回值类型为ModelAndView时,方法体即可通过该对象添加模型数据.数据会添加到request域中. ...

  5. 目标检测模型的性能评估--MAP(Mean Average Precision)

    目标检测模型中性能评估的几个重要参数有精确度,精确度和召回率.本文中我们将讨论一个常用的度量指标:均值平均精度,即MAP. 在二元分类中,精确度和召回率是一个简单直观的统计量,但是在目标检测中有所不同 ...

  6. 一个评测指标就是MAP(Mean Average Precision)平均精度均值。

    一个评测指标就是MAP(Mean Average Precision)平均精度均值. 转载 2017年09月13日 10:07:12 标签: 深度学习 892 来源01:Mean Average Pr ...

  7. 模型评估【PR|ROC|AUC】

    这里主要讲的是对分类模型的评估. 1.准确率(Accuracy) 准确率的定义是:[分类正确的样本] / [总样本个数],其中分类正确的样本是不分正负样本的 优点:简单粗暴 缺点:当正负样本分布不均衡 ...

  8. Precision/Recall、ROC/AUC、AP/MAP等概念区分

    1. Precision和Recall Precision,准确率/查准率.Recall,召回率/查全率.这两个指标分别以两个角度衡量分类系统的准确率. 例如,有一个池塘,里面共有1000条鱼,含10 ...

  9. 【分类模型评判指标 二】ROC曲线与AUC面积

    转自:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80499031 略有改动,仅供个人学习使用 简介 ROC曲线与AUC面积均是用来 ...

随机推荐

  1. Java实现 LeetCode 40 组合总和 II(二)

    40. 组合总和 II 给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的每个数字在 ...

  2. Java实现LeetCode_0028_ImplementStrStr

    package javaLeetCode.primary; import java.util.Scanner; public class ImplementStrStr_28 { public sta ...

  3. Java实现 洛谷 P1618 三连击(升级版)

    import java.util.Arrays; import java.util.Scanner; public class Main { private static Scanner cin; p ...

  4. java实现孪生素数

    ** 孪生素数** 孪生素数 所谓孪生素数指的就是间隔为 2 的相邻素数,它们之间的距离已经近得不能再近了,就象孪生兄弟一样.最小的孪生素数是 (3, 5),在 100 以内的孪生素数还有 (5, 7 ...

  5. MySQL 8.0二进制包安装

    1.官方下载 https://dev.mysql.com/downloads/mysql/ 这样就可以下载二进制包了 1.删除之前安装的MySQL包 [root@localhost ~]# rpm - ...

  6. POJ - 2184 Cow Exhibition 题解

    题目大意 有 \(N(N \le 100)\) 头奶牛,没有头奶牛有两个属性 \(s_i\) 和 \(f_i\),两个范围均为 \([-1000, 1000]\). 从中挑选若干头牛,\(TS = \ ...

  7. vs2010静态编译qt5.1.0

    本博文参考 http://blog.chinaunix.net/uid-20690340-id-3802197.html 静态库在链接的时候直接写入二进制文件里,这样的好处在于发布的时候无需附带dll ...

  8. SpringBoot与(Security)安全

    1.简介 应用程序的两个主要区域 认证(Authentication): 是建立一个它声明的主体的过程(一个"主体" 一般是指用户,设备或一些可以在你的应用程序中执行动作的其他系统 ...

  9. 如何利用Excel设计一个唱票统计系统?

    具体操作如下: 首先需要一个如下的数据结构. 唱票数G列区域,不能手动输入候选人票数,这样很不方便,所以我们需要一个窗体控件,用点击鼠标的方法来实现唱票.在“开发工具-插入-数值调节钮”下图3处,然后 ...

  10. 刷一遍《剑指Offer》,你还需要这些知识!(一刷)

    因为时间紧和基础薄弱,一刷<剑指Offer>就变成了速看. 我按照: 1.看题目思考一会: 2.上网找找关于题目里不懂的知识点: 3.看评论和官方题解的解法,尽量看懂,并及时弄懂不懂的地方 ...