This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.

An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.

As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.

For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.

Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it's the product of three H-primes.

Input

Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.

Output

For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.

Sample Input

21
85
789
0

Sample Output

21 0
85 5
789 62 思路:打表求出H-prime,再两两相乘,用树状数组优化求和问题即可
typedef long long LL;
typedef pair<LL, LL> PLL; const int maxm = 1e6+; bool prime[maxm];
int vis[maxm];
int jud[maxm], siz = , C[maxm]; void add(int x, int val) {
for(; x < maxm; x += lowbit(x))
C[x] += val;
} LL getsum(int x) {
LL ret = ;
for(; x; x -= lowbit(x))
ret += C[x];
return ret;
} void getHprime() {
for(int i = ; i < maxm; i += ) {
if(!prime[i]) {
for(int j = *i; j < maxm; j += i)
prime[j] = true;
jud[siz++] = i;
for(int k = ; k < siz; ++k) {
if(maxm / i >= jud[k]) {
if(!vis[jud[k] * i]++)
add(i*jud[k], );
} else
break;
} }
} } int main() {
getHprime();
int n;
while(scanf("%d", &n) && n) {
printf("%d %lld\n", n, getsum(n));
}
return ;
}
												

Day7 - I - Semi-prime H-numbers POJ - 3292的更多相关文章

  1. 【POJ 3292】 Semi-prime H-numbers

    [POJ 3292] Semi-prime H-numbers 打个表 题意是1 5 9 13...这样的4的n次方+1定义为H-numbers H-numbers中仅仅由1*自己这一种方式组成 即没 ...

  2. POJ 3292 Semi-prime H-numbers (素数筛法变形)

    题意:题目比较容易混淆,要搞清楚一点,这里面所有的定义都是在4×k+1(k>=0)这个封闭的集合而言的,不要跟我们常用的自然数集混淆. 题目要求我们计算 H-semi-primes, H-sem ...

  3. Day7 - J - Raising Modulo Numbers POJ - 1995

    People are different. Some secretly read magazines full of interesting girls' pictures, others creat ...

  4. Sum of Consecutive Prime Numbers POJ - 2739 线性欧拉筛(线性欧拉筛证明)

    题意:给一个数 可以写出多少种  连续素数的合 思路:直接线性筛 筛素数 暴力找就行   (素数到n/2就可以停下了,优化一个常数) 其中:线性筛的证明参考:https://blog.csdn.net ...

  5. Greedy:Sum of Consecutive Prime Numbers(POJ 2739)

     素数之和 题目大意:一些整数可以表示成一个连续素数之和,给定一个整数要你找出可以表示这一个整数的连续整数序列的个数 方法:打表,然后用游标卡尺法即可 #include <iostream> ...

  6. A - Smith Numbers POJ

    While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,no ...

  7. POJ 3292 Semi-prime H-numbers

    类似素数筛... Semi-prime H-numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6873 Accept ...

  8. POJ 3292

    Semi-prime H-numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7059   Accepted: 3 ...

  9. Prime Path(poj 3126)

    Description The ministers of the cabinet were quite upset by the message from the Chief of Security ...

随机推荐

  1. 陶陶摘苹果(0)<P2005_1>

    陶陶摘苹果 (apple.pas/c/cpp) [问题描述]  陶陶家的院子里有一棵苹果树,每到秋天树上就会结出10个苹果.苹果成熟的时候,陶陶就会跑去摘苹果.陶陶有个30厘米高的板凳,当她不能直接用 ...

  2. WKWebView单个界面添加请求头

    https://www.jianshu.com/p/14b9ea4bf1d4 https://github.com/Yeatse/NSURLProtocol-WebKitSupport/blob/ma ...

  3. VM player无法联网问题

    情况就是vmplayer不能联网,能联网的话右上角会显示Wired Connected的 在VM里面看了网络设置,是和主机共享IP(常用)没错.那问题就在PC上了,在win+r输入services.m ...

  4. Python中的进制表示方式及转换方法

    在Python中,非十进制数字的表示方式为: 二进制:前面加0b,如0b1001 八进制:前面加0o,如0o3562 十六进制:前面加0x,如0x2af3 不同进制数字可直接进行数学计算,结果返回十进 ...

  5. 学习笔记(14)- SQuAD的数据格式

    BERT模型完成问答任务的时候,需要数据格式为SQuAD形式. 有2个版本,1.1和2.0

  6. sparkRDD:第4节 RDD的依赖关系;第5节 RDD的缓存机制;第6节 DAG的生成

    4.      RDD的依赖关系 6.1      RDD的依赖 RDD和它依赖的父RDD的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency ...

  7. run jumper server

    1. 生成key: $ if [ "$SECRET_KEY" = "" ]; then SECRET_KEY=`cat /dev/urandom | tr -d ...

  8. ash.jpg

  9. Linux centosVMware Nginx安装、 默认虚拟主机、Nginx用户认证、Nginx域名重定向

    一. Nginx安装 cd /usr/local/src wget http://nginx.org/download/nginx-1.12.1.tar.gz 版本在http://nginx.org/ ...

  10. 用华为C8813调试LogCat不显示日志问题解决方法

    我用华为C8813调试代码时,Eclipse不输出LogCat日志,用其他Android Pad是正常输出的.找了几种解决方法都不行,最后发现如下的方法,问题解决!   华为Android手机打开Lo ...