启动Spark-shell:

[root@node1 ~]# spark-shell
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel).
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 1.6.0
      /_/

Using Scala version 2.10.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_131)
Type in expressions to have them evaluated.
Type :help for more information.
Spark context available as sc (master = yarn-client, app id = application_1554951897984_0111).
SQL context available as sqlContext.

scala> sc
res0: org.apache.spark.SparkContext = org.apache.spark.SparkContext@272485a6

scala> sqlContext
res1: org.apache.spark.sql.SQLContext = org.apache.spark.sql.hive.HiveContext@11c95035

上下文已经包含 sc 和 sqlContext:

Spark context available as sc (master = yarn-client, app id = application_1554951897984_0111).
SQL context available as sqlContext.

本地创建people07041119.json

{"name":"zhangsan","job number":"101","age":33,"gender":"male","deptno":1,"sal":18000}
{"name":"lisi","job number":"102","age":30,"gender":"male","deptno":2,"sal":20000}
{"name":"wangwu","job number":"103","age":35,"gender":"female","deptno":3,"sal":50000}
{"name":"zhaoliu","job number":"104","age":31,"gender":"male","deptno":1,"sal":28000}
{"name":"tianqi","job number":"105","age":36,"gender":"female","deptno":3,"sal":90000}

本地创建dept.json

{"name":"development","deptno":1}
{"name":"personnel","deptno":2}
{"name":"testing","deptno":3}

将本地文件上传到HDFS上:

bash-4.2$ hadoop dfs -put /home/**/data/people07041119.json /user/**
bash-4.2$ hadoop dfs -put /home/**/data/dept.json /user/**

结果如下:

执行Scala脚本,加载文件:

scala> val people=sqlContext.jsonFile("/user/**/people07041119.json")
warning: there were  deprecation warning(s); re-run with -deprecation for details
people: org.apache.spark.sql.DataFrame = [age: bigint, deptno: bigint, gender: string, job number: string, name: string, sal: bigint]

scala> val dept=sqlContext.jsonFile("/user/**/dept.json")
warning: there were  deprecation warning(s); re-run with -deprecation for details
people: org.apache.spark.sql.DataFrame = [deptno: bigint, name: string]    

执行Scala脚本,查看文件内容:

scala> people.show
+---+------+------+----------+--------+-----+
|age|deptno|gender|job number|    name|  sal|
+---+------+------+----------+--------+-----+
| |     |  male|       |zhangsan||
| |     |  male|       |    lisi||
| |     |female|       |  wangwu||
| |     |  male|       | zhaoliu||
| |     |female|       |  tianqi||
+---+------+------+----------+--------+-----+

显示前三条记录:

scala> people.show()
+---+------+------+----------+--------+-----+
|age|deptno|gender|job number|    name|  sal|
+---+------+------+----------+--------+-----+
| |     |  male|       |zhangsan||
| |     |  male|       |    lisi||
| |     |female|       |  wangwu||
+---+------+------+----------+--------+-----+
only showing top  rows

查看列信息:

scala>  people.columns
res5: Array[String] = Array(age, deptno, gender, job number, name, sal)

添加过滤条件:

scala>  people.filter("gender='male'").count
res6: Long = 

参考:

https://blog.csdn.net/xiaolong_4_2/article/details/80886371

Spark教程——(4)Spark-shell调用SQLContext(HiveContext)的更多相关文章

  1. spark教程(二)-shell操作

    spark 支持 shell 操作 shell 主要用于调试,所以简单介绍用法即可 支持多种语言的 shell 包括 scala shell.python shell.R shell.SQL shel ...

  2. spark教程(八)-SparkSession

    spark 有三大引擎,spark core.sparkSQL.sparkStreaming, spark core 的关键抽象是 SparkContext.RDD: SparkSQL 的关键抽象是 ...

  3. spark教程(11)-sparkSQL 数据抽象

    数据抽象 sparkSQL 的数据抽象是 DataFrame,df 相当于表格,它的每一行是一条信息,形成了一个 Row Row 它是 sparkSQL 的一个抽象,用于表示一行数据,从表现形式上看, ...

  4. spark教程(四)-SparkContext 和 RDD 算子

    SparkContext SparkContext 是在 spark 库中定义的一个类,作为 spark 库的入口点: 它表示连接到 spark,在进行 spark 操作之前必须先创建一个 Spark ...

  5. Spark教程——(11)Spark程序local模式执行、cluster模式执行以及Oozie/Hue执行的设置方式

    本地执行Spark SQL程序: package com.fc //import common.util.{phoenixConnectMode, timeUtil} import org.apach ...

  6. spark教程

    某大神总结的spark教程, 地址 http://litaotao.github.io/introduction-to-spark?s=inner

  7. spark教程(七)-文件读取案例

    sparkSession 读取 csv 1. 利用 sparkSession 作为 spark 切入点 2. 读取 单个 csv 和 多个 csv from pyspark.sql import Sp ...

  8. spark教程(一)-集群搭建

    spark 简介 建议先阅读我的博客 大数据基础架构 spark 一个通用的计算引擎,专门为大规模数据处理而设计,与 mapreduce 类似,不同的是,mapreduce 把中间结果 写入 hdfs ...

  9. Spark教程——(10)Spark SQL读取Phoenix数据本地执行计算

    添加配置文件 phoenixConnectMode.scala : package statistics.benefits import org.apache.hadoop.conf.Configur ...

  10. 一、spark入门之spark shell:wordcount

    1.安装完spark,进入spark中bin目录: bin/spark-shell   scala> val textFile = sc.textFile("/Users/admin/ ...

随机推荐

  1. workspace 打开的是我的电脑

    在system tree板块的空白处右键-->set root-->current workspace 即可恢复workspace.

  2. Springboot学习:SpringMVC自动配置

    Spring MVC auto-configuration Spring Boot 自动配置好了SpringMVC 以下是SpringBoot对SpringMVC的默认配置:==(WebMvcAuto ...

  3. Cisco Spectrum Expert(Wave2 AP)

    在一些版本中,我们可能会发现,AP16,26或AP17,27,37等支持Spectrum Expert Connect (即SE-Connect),该模式可以让AP将频谱分析所述数据发送到对应的分析仪 ...

  4. Servlet里面request处理外部POST请求的输入流的工具类

    package etcom.servlet; import java.io.BufferedReader; import java.io.IOException; import java.io.Inp ...

  5. windows下安装elasticsearch-6.4.3和elasticsearch-head插件

    windows下安装elasticsearch-6.4.3和elasticsearch-head插件 博客分类: elasticsearch es  ElasticSearch下载地址:https:/ ...

  6. 【摘录自MDN】预定义函数

    JavaScript语言有好些个顶级的内建函数: eval() eval()方法会对一串字符串形式的JavaScript代码字符求值. uneval()  uneval()方法创建的一个Object的 ...

  7. 如何安装部署和优化Tomcat?(Tomcat部署和优化与压测,虚拟主机配置,Tomcat处理请求的过程)

    文章目录 前言 一:Tomcat安装部署 1.1:Tomcat简介 1.2:Tomcat核心组件 1.3:Tomcat处理请求的过程 1.3.1:请求过程基本解释 1.3.2:请求过程详细解释 1.4 ...

  8. Java基础知识笔记第八章:常用的实体类

    String类 String类位于lang包下 java会默认导入lang包下的类,所以可以直接使用,注意String是final类所以不能有子类 构造String对象: 常量对象:String常量也 ...

  9. 编写自己的JDBC框架

    目的 简化代码,提高开发效率 设计模式 策略设计模式 代码 #连接设置 driverClassName=com.mysql.jdbc.Driver url=jdbc:mysql://localhost ...

  10. 区分 for...in 和 for...of

    我们都知道在 JavaScript 中 for...in 和 for...of 都可以迭代一个数组,但他们之间也有着很大的区别: 区别一:用于迭代器的返回值不同 for...in 和 for...of ...