启动Spark-shell:

[root@node1 ~]# spark-shell
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel).
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 1.6.0
      /_/

Using Scala version 2.10.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_131)
Type in expressions to have them evaluated.
Type :help for more information.
Spark context available as sc (master = yarn-client, app id = application_1554951897984_0111).
SQL context available as sqlContext.

scala> sc
res0: org.apache.spark.SparkContext = org.apache.spark.SparkContext@272485a6

scala> sqlContext
res1: org.apache.spark.sql.SQLContext = org.apache.spark.sql.hive.HiveContext@11c95035

上下文已经包含 sc 和 sqlContext:

Spark context available as sc (master = yarn-client, app id = application_1554951897984_0111).
SQL context available as sqlContext.

本地创建people07041119.json

{"name":"zhangsan","job number":"101","age":33,"gender":"male","deptno":1,"sal":18000}
{"name":"lisi","job number":"102","age":30,"gender":"male","deptno":2,"sal":20000}
{"name":"wangwu","job number":"103","age":35,"gender":"female","deptno":3,"sal":50000}
{"name":"zhaoliu","job number":"104","age":31,"gender":"male","deptno":1,"sal":28000}
{"name":"tianqi","job number":"105","age":36,"gender":"female","deptno":3,"sal":90000}

本地创建dept.json

{"name":"development","deptno":1}
{"name":"personnel","deptno":2}
{"name":"testing","deptno":3}

将本地文件上传到HDFS上:

bash-4.2$ hadoop dfs -put /home/**/data/people07041119.json /user/**
bash-4.2$ hadoop dfs -put /home/**/data/dept.json /user/**

结果如下:

执行Scala脚本,加载文件:

scala> val people=sqlContext.jsonFile("/user/**/people07041119.json")
warning: there were  deprecation warning(s); re-run with -deprecation for details
people: org.apache.spark.sql.DataFrame = [age: bigint, deptno: bigint, gender: string, job number: string, name: string, sal: bigint]

scala> val dept=sqlContext.jsonFile("/user/**/dept.json")
warning: there were  deprecation warning(s); re-run with -deprecation for details
people: org.apache.spark.sql.DataFrame = [deptno: bigint, name: string]    

执行Scala脚本,查看文件内容:

scala> people.show
+---+------+------+----------+--------+-----+
|age|deptno|gender|job number|    name|  sal|
+---+------+------+----------+--------+-----+
| |     |  male|       |zhangsan||
| |     |  male|       |    lisi||
| |     |female|       |  wangwu||
| |     |  male|       | zhaoliu||
| |     |female|       |  tianqi||
+---+------+------+----------+--------+-----+

显示前三条记录:

scala> people.show()
+---+------+------+----------+--------+-----+
|age|deptno|gender|job number|    name|  sal|
+---+------+------+----------+--------+-----+
| |     |  male|       |zhangsan||
| |     |  male|       |    lisi||
| |     |female|       |  wangwu||
+---+------+------+----------+--------+-----+
only showing top  rows

查看列信息:

scala>  people.columns
res5: Array[String] = Array(age, deptno, gender, job number, name, sal)

添加过滤条件:

scala>  people.filter("gender='male'").count
res6: Long = 

参考:

https://blog.csdn.net/xiaolong_4_2/article/details/80886371

Spark教程——(4)Spark-shell调用SQLContext(HiveContext)的更多相关文章

  1. spark教程(二)-shell操作

    spark 支持 shell 操作 shell 主要用于调试,所以简单介绍用法即可 支持多种语言的 shell 包括 scala shell.python shell.R shell.SQL shel ...

  2. spark教程(八)-SparkSession

    spark 有三大引擎,spark core.sparkSQL.sparkStreaming, spark core 的关键抽象是 SparkContext.RDD: SparkSQL 的关键抽象是 ...

  3. spark教程(11)-sparkSQL 数据抽象

    数据抽象 sparkSQL 的数据抽象是 DataFrame,df 相当于表格,它的每一行是一条信息,形成了一个 Row Row 它是 sparkSQL 的一个抽象,用于表示一行数据,从表现形式上看, ...

  4. spark教程(四)-SparkContext 和 RDD 算子

    SparkContext SparkContext 是在 spark 库中定义的一个类,作为 spark 库的入口点: 它表示连接到 spark,在进行 spark 操作之前必须先创建一个 Spark ...

  5. Spark教程——(11)Spark程序local模式执行、cluster模式执行以及Oozie/Hue执行的设置方式

    本地执行Spark SQL程序: package com.fc //import common.util.{phoenixConnectMode, timeUtil} import org.apach ...

  6. spark教程

    某大神总结的spark教程, 地址 http://litaotao.github.io/introduction-to-spark?s=inner

  7. spark教程(七)-文件读取案例

    sparkSession 读取 csv 1. 利用 sparkSession 作为 spark 切入点 2. 读取 单个 csv 和 多个 csv from pyspark.sql import Sp ...

  8. spark教程(一)-集群搭建

    spark 简介 建议先阅读我的博客 大数据基础架构 spark 一个通用的计算引擎,专门为大规模数据处理而设计,与 mapreduce 类似,不同的是,mapreduce 把中间结果 写入 hdfs ...

  9. Spark教程——(10)Spark SQL读取Phoenix数据本地执行计算

    添加配置文件 phoenixConnectMode.scala : package statistics.benefits import org.apache.hadoop.conf.Configur ...

  10. 一、spark入门之spark shell:wordcount

    1.安装完spark,进入spark中bin目录: bin/spark-shell   scala> val textFile = sc.textFile("/Users/admin/ ...

随机推荐

  1. opencv python:模糊操作

    均值模糊 中值模糊 自定义模糊 模糊操作的基本原理 基于离散卷积 定义好每个卷积核 不同卷积核得到不同的卷积效果 模糊是卷积的一种表象 blur cv2.blur(image, (1, 3)) 第二个 ...

  2. idea 启动java项目报 java: 程序包org.apache.jasper.tagplugins.jstl.core不存在

    File -- Project Structure

  3. IDEA 创建 Spring Boot 多模块项目(Multi Modules)

    本准备写点代码实例放到网站,太多的模板,反而每次新建工程的时候很麻烦.于是准备把这个章节的内容提前先讲讲.正好把这个代码也管理起来.话说这个多模块功能还挺爽. 写过 C# 项目用过 Visual St ...

  4. ASA-ACL类型

    安全设备支持下面5种不同类型的ACl: 标准ACL 扩展ACL(可匹配v4&v6流量) EtherType ACL (以太网类型ACL) WebType ACL(Web类型ACL) 1.标准A ...

  5. sqlserver数据将多个表或视图的数据合并到一个表或视图里的sql语句

    create view dbo.V_ZDUser_DDasselect * from dbo.V_ZDUser_DD1 union all select * from dbo.V_ZDUser_DD2 ...

  6. dp求解各种子串子序列

    目录 概念 最长上升子序列 最长连续子串 最长公共子序列 最长公共上升子序列 注:dp可能并不是求解该这些问题的最优算法,这里只是做一个dp 算法的简介. 概念 定义:假设现有一个 string = ...

  7. 扒网站工具 HTTrack Website Copier

    下载地址:http://www.pc6.com/softview/SoftView_30936.html 作者:匿名用户 链接:https://www.zhihu.com/question/34188 ...

  8. Jenkins 定时备份插件 ThinBackup

    需求 公司的整个测试环境正式环境打包都是用的同一个Jenkins, 该Jenkins是搭建在内部的一台机器上,之前有一台机器的硬盘出了问题,为了安全起见,我们决定备份 Jenkins 的配置和数据. ...

  9. matlab练习程序(传染病模型)

    最近新型冠状病毒疫情越来越严重了,待在家中没法出去,学习一下经典传染病模型. 这里总结了五个模型,分别是SI模型,SIS模型,SIR模型,SIRS模型,SEIR模型. 这几种模型的特点先介绍一下. 首 ...

  10. 解决Hibernate配置文件不在SRC文件夹下获取Session方法