生物统计学-重复测量的方差分析

之前的方差分析应用条件要求组之间是独立的,即某种因素下相同时段测量的结果数据,但4月与5月数据是有关系的,所以必须考虑某种因素下不同时段测量的结果数据,即使用重复测量的方差分析,即处理*基于时间因素的重复测量*同一时间下的重复测量。

这样的好处是克服时间效应,在样本数少的情况下数据量不会太少,但是重复测量使得对象有三种效应。假定测定时间对对象无影响是配对样本t检验的前提,否则用重复测量的方差分析。

使用条件是样本个体之间相互独立,即A患者与B患者没有关系。方差齐性是每种处理方差相同,即所有患者在接受不同处理后的数据,患者A的所有数据与患者B的所有数据的方差都是相同的;协方差球对称性,即通过球对称检验,否则就是有偏的,这需要调自由度。

总变异=个体间(患者在不同处理下的差异)+个体内(患者不同时间点的差异)

1.建立假设2.检验对称性(不同检验方法)

常见是一致的,如果不一致就选择第一个

多重比对必须经过球对称检验:即p-value必须非显著的:

Mauchly's Test of Sphericitya

Measure:   MEASURE_1

Within Subjects Effect

Mauchly's W

Approx. Chi-Square

df

Sig.

Epsilonb

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

time

0.208

12.131

5

0.034

0.595

0.733

0.333

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

a. Design: Intercept

Within Subjects Design: time

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

如果该差异是显著的,则不满足球测试,则需要优化此表中的自由度:在组内影响中出现的自由度是经过优化之后的:

重复测量的方差分析|Mauchly's Test of Sphericity|的更多相关文章

  1. SPSS中两种重复测量资料分析过程的比较

    在SPSS中,有两个过程可以对重复测量资料进行分析:一种是一般线性模型的重复度量:一种是混合线性模型,对于同样的数据资料,使用两种过程分析出的内容不大一样,注意是内容而不是结果,只要操作正确,结果应该 ...

  2. SPSS数据分析—重复测量差分析

    多因素方差分析中,每个被试者仅接受一种实验处理,通过随机分配的方式抵消个体间差异所带来的误差,但是这种误差并没有被排除.而重复测量设计则是让每个被试接受所有的实验处理,这样我们就可以分离出个体差异所带 ...

  3. SPSS统计分析案例:无空白列重复正交试验设计方差分析

    SPSS统计分析案例:无空白列重复正交试验设计方差分析 前面有讲过 SPSS正交试验设计及其方差分析 一篇文章,包含了一个典型的正交试验案例.然而在实际应用当中,主观客观条件复杂多变,在试验设计中就要 ...

  4. R语言实战(五)方差分析与功效分析

    本文对应<R语言实战>第9章:方差分析:第10章:功效分析 ================================================================ ...

  5. R in action读书笔记(12)第九章 方差分析

    第九章方差分析 9.2 ANOVA 模型拟合 9.2.1 aov()函数 aov(formula, data = NULL, projections =FALSE, qr = TRUE, contra ...

  6. R语言-方差分析

    方差分析指的是不同变量之间互相影响从而导致结果的变化 1.单因素方差分析: 案例:50名患者接受降低胆固醇治疗的药物,其中三种治疗条件使用药物相同(20mg一天一次,10mg一天两次,5mg一天四次) ...

  7. R-4 方差分析

    本节内容: 1:方差分析的原理 2:单因数方差分析 .双因数分析 3:交互项 一:方差分析是原理 方差分析原理 对总体均值的假设检验,有三种情况:1.总体均值与某个常数进行比较:2.两个总体均值之间的 ...

  8. SAS学习笔记26 方差分析

    对于多于两组(k>2)样本均数的比较,t检验不再适用,方差分析(analysis of variance, ANOVA)则是解决上述问题的重要分析方法.方差分析由R.A.Fisher(1923) ...

  9. 实验的方差分析(R语言)

    实验设计与数据处理(大数据分析B中也用到F分布,故总结一下,加深印象)第3课小结--实验的方差分析(one-way analysis of variance) 概述 实验结果\(S\)受多个因素\(A ...

随机推荐

  1. vue图片查看器

    vue 安装图片查看器插件安装cnpm install v-viewer引用 import 'viewerjs/dist/viewer.css' import Viewer from 'v-viewe ...

  2. css,js,jquery的载入方式和属性控制

    本文章主要总结了css,js,jQuery在编写程序时的载入方式,与属性控制方式html和css共同组成了一个最基础的网页,js为标签样式提供动态效果 一,css的载入方式与属性控制 1.1,css引 ...

  3. 连词词组|relax|brings about a rise in|Chance are (high)that|Have no clue|Be passionate about|Tedious|overwhelmed by piles of

    efficient有效率的 effective有效果的 Make sb. Do Stuff没有复数 首先的三种表述:First off=To begin with=For starters 其次:Ad ...

  4. lower_bound()和upper_bound()用法详解

    lower_bound( )和upper_bound( )都是利用二分查找的方法在一个排好序的数组中进行查找的. lower_bound( begin,end,num):从数组的begin位置到end ...

  5. 纯手撸web框架

    纯手撸web框架 一.Web应用的组成 接下来我们学习的目的是为了开发一个Web应用程序,而Web应用程序是基于B/S架构的,其中B指的是浏览器,负责向S端发送请求信息,而S端会根据接收到的请求信息返 ...

  6. Windows Boot Manager、Bootmgfw.efi、Bootx64.efi、bcdboot.exe 文件的关系

    本教程针对于UEFI启动来叙述的,根据普遍的支持UEFI的机器来叙述. 标题简要说明:Windows Boot Manager  --------安装完Windows系统后而出现的启动选项(相关的信息 ...

  7. Linux轻量级自动化运维工具— Ansible

    Ansible 是什么 ? ansible是新出现的自动化运维工具,基于Python开发,集合了众多运维工具(puppet.cfengine.chef.func.fabric)的优点,实现了批量系统配 ...

  8. Angular ng-container ng-template 用法

    ng-container本身不创建任何html代码,相当于一个容器. <ng-container *ngFor="let item of dataSource;let i=index& ...

  9. opencv模板匹配查找图像(python)

    #!/usr/bin/env python3 # -*- coding: utf-8 -*- import cv2 import numpy as np from cv2 import COLOR_B ...

  10. Android 自定义dialog类

    首先定制style样式 styles.xml 加入自定义样式 <style name="CustomLoadingDialog"> <item name=&quo ...