题目

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The lef subtree of a node contains only nodes with keys less than the node’s key. The right subtree of a node contains only nodes with keys greater than or equal to the node’s key. Both the lef and right subtrees must also be binary search trees. If we swap the lef and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST. Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, first print in a line “YES” if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or “NO” if not. Then if the answer is “YES”, print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input 1:

7

8 6 5 7 10 8 11

Sample Output 1:

YES

5 7 6 8 11 10 8

Sample Input 2:

7

8 10 11 8 6 7 5

Sample Output 2:

YES

11 8 10 7 5 6 8

Sample Input 3:

7

8 6 8 5 10 9 11

Sample Output 3:

NO

题目分析

已知二叉查找树节点序列,判断是其前序序列还是其镜像树的前序序列,并打印相应树的后序序列

解题思路

思路 01

  1. 输入测试数据时,分别建树和建镜像树
  2. 先用树的先序序列与原测试序列对比,若同即输出YES,若不同再用镜像树先序序列对比,若同输出YES,不同则NO
  3. 若为YES,打印相应后序序列

思路 02(最优、难理解)

  1. 输入测试数据时,建树
  2. 根据二叉查找树的性质(大于所有左子树节点,小于所有右子树节点)

    2.1 获取后序序列,若后序序列中的结点数与原测试用例结点数相同,即为二叉查找树的先序序列打印YES,若不同,清空,并进性镜像树的后序序列获取

    2.2 获取镜像树的后序序列结点数,若与原测试用例结点数相同,即为二叉查找树镜像树的先序序列YES,若不同,打印NO
  3. 若为YES,打印相应后序序列

知识点

二叉查找树的前序转后序,无需建树,可根据其性质(大于所有左子树节点,小于所有右子树节点)建树

如前序序列:8 6 5 7 10 8 11

8是根节点

左子树:从6开始往后找小于8的都为8的左子树节点

右子树:从最后一位11开始往前找大于8的都为8的右子树节点

继续递归过程,直到完成建树

Code

Code 01

#include <iostream>
#include <vector>
using namespace std;
struct node {
int data;
node * left=NULL;
node * right=NULL;
node() {}
node(int _data):data(_data) {}
};
node * root,* rootM;
void insert(int n, int b) {
if(root==NULL&&b==0) {
root = new node(n);
return;
}
if(rootM==NULL&&b==1) {
rootM = new node(n);
return;
}
node * p;
if(b==0)p=root;
else p=rootM;
while(p!=NULL) {
if((n<p->data&&b==0)||(n>=p->data&&b==1)) {
if(p->left==NULL) {
p->left=new node(n);
return;
}
p=p->left;
} else if((n>=p->data&&b==0)||(n<p->data&&b==1)) {
if(p->right==NULL) {
p->right=new node(n);
return;
}
p=p->right;
}
}
}
vector<int> origin,pre,post,preM,postM;
void preOrder(node * nd, int b) {
if(nd==NULL)return;
if(b==0)pre.push_back(nd->data);
else preM.push_back(nd->data);
preOrder(nd->left,b);
preOrder(nd->right,b);
}
void postOrder(node * nd, int b) {
if(nd==NULL)return;
postOrder(nd->left,b);
postOrder(nd->right,b);
if(b==0)post.push_back(nd->data);
else postM.push_back(nd->data);
}
int main(int argc,char * argv[]) {
int n,m;
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&m);
origin.push_back(m);
insert(m,0);
insert(m,1);
}
// int flag = -1;//0 前序;1 镜像前序;2 NO
preOrder(root,0);
preOrder(rootM,1);
if(pre==origin) {
postOrder(root,0);
printf("YES\n");
for(int i=0; i<post.size(); i++) {
if(i!=0)printf(" ");
printf("%d",post[i]);
}
} else if(preM==origin) {
if(preM==origin) {
postOrder(rootM,1);
printf("YES\n");
for(int i=0; i<postM.size(); i++) {
if(i!=0)printf(" ");
printf("%d",postM[i]);
}
}
}else{
printf("NO\n");
}
return 0;
}

Code 02(最优、难理解)

#include <iostream>
#include <vector>
using namespace std;
vector<int> pre,post;
bool isMirror;
void getPost(int root, int tail) {
if(root>tail)return;
int i=root+1;
int j=tail;
if(!isMirror) {
while(i<=tail&&pre[i]<pre[root])i++;
while(j>root&&pre[j]>=pre[root])j--;
} else {
while(i<=tail&&pre[i]>=pre[root])i++;
while(j>root&&pre[j]<pre[root])j--;
}
if(i-j!=1)return;
getPost(root+1,j);//左子树
getPost(i,tail); //右子树
post.push_back(pre[root]);
}
int main(int argc,char * argv[]) {
int n,m;
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&m);
pre.push_back(m);
}
getPost(0,n-1);
if(post.size()!=n) {
isMirror=true;
post.clear();
getPost(0,n-1);
}
if(post.size()==n) {
printf("YES\n%d",post[0]);
for(int i=1; i<post.size(); i++) {
printf(" %d",post[i]);
}
} else {
printf("NO\n");
}
return 0;
}

PAT Advanced 1043 Is It a Binary Search Tree (25) [⼆叉查找树BST]的更多相关文章

  1. PAT Advanced 1099 Build A Binary Search Tree (30) [⼆叉查找树BST]

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  2. PAT Advanced 1064 Complete Binary Search Tree (30) [⼆叉查找树BST]

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  3. PAT 甲级 1043 Is It a Binary Search Tree (25 分)(链表建树前序后序遍历)*不会用链表建树 *看不懂题

    1043 Is It a Binary Search Tree (25 分)   A Binary Search Tree (BST) is recursively defined as a bina ...

  4. 【PAT】1043 Is It a Binary Search Tree(25 分)

    1043 Is It a Binary Search Tree(25 分) A Binary Search Tree (BST) is recursively defined as a binary ...

  5. PAT 甲级 1043 Is It a Binary Search Tree

    https://pintia.cn/problem-sets/994805342720868352/problems/994805440976633856 A Binary Search Tree ( ...

  6. PAT 1043 Is It a Binary Search Tree (25分) 由前序遍历得到二叉搜索树的后序遍历

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  7. 1043 Is It a Binary Search Tree (25分)(树的插入)

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  8. PAT (Advanced Level) 1043. Is It a Binary Search Tree (25)

    简单题.构造出二叉搜索树,然后check一下. #include<stdio.h> #include<algorithm> using namespace std; +; st ...

  9. PAT (Advanced Level) 1099. Build A Binary Search Tree (30)

    预处理每个节点左子树有多少个点. 然后确定值得时候递归下去就可以了. #include<cstdio> #include<cstring> #include<cmath& ...

随机推荐

  1. 机器学习-liuyubobobo(慕课网)

    第一章 python3玩转机器学习 第二章 机器学习基础 安装:1.anaconda   2.pycharm 第三章 Jupyter Notebook,numpy,Matplotlib 1.jupyt ...

  2. Ubuntu安装Python版本管理工具pyenv

    gyf@gyf-VirtualBox:~$ git clone https://github.com/yyuu/pyenv.git ~/.pyenvCloning into '/home/gyf/.p ...

  3. mongodb - schema中格式时间

       date:{ type: String,        default: () => moment(new Date()).format('YYYY-MM-DD HH:mm:ss'),   ...

  4. ROS大型工程学习(二) 怎么阅读大型工程

    基本思路是由点到面,由浅到深. 1.首先从launch文件入手. 文件中会看到比如: <node ns="> <rosparam command="load&qu ...

  5. Vue.js(24)之 弹窗组件封装

    同事封装了一个弹窗组件,觉得还不错,直接拿来用了: gif图展示: 弹框组件代码: <template> <transition name="confirm-fade&qu ...

  6. MacType

    #前言 这几天实在是嫌弃Win10垃圾的字体渲染效果--发虚模糊,索性从网上找了个系统字体渲染软件即MacType给系统字体改头换面. #使用效果 这里贴出两个场景的效果对比(单击图片查看具体效果) ...

  7. Java的包装类

    一.概述 因为基本数据类型的变量身上没有任何的方法和属性,所以针对基本数据类型提供了对应的类形式--包装类. 利用这个类产生对象,调用对象身上的方法来操作这个数据. 二.分类 包装类分为以下几种: 基 ...

  8. 吴裕雄--天生自然C++语言学习笔记:C++ 数据封装

    所有的 C++ 程序都有以下两个基本要素: 程序语句(代码):这是程序中执行动作的部分,它们被称为函数. 程序数据:数据是程序的信息,会受到程序函数的影响. 封装是面向对象编程中的把数据和操作数据的函 ...

  9. 【Android】家庭记账本手机版开发报告六

    一.说在前面  昨天 1.创建登入和注册界面:2.向数据库添加一张用户表  今天 用图标显示账单情况 问题 1.使用第三方库 hellochart,时添加依赖构建失败 2.在 chertFragmen ...

  10. WIN10怎么查看端口,并杀死进程

    在命令行执行一下命令 netstat -ano | findstr "