PAT Advanced 1043 Is It a Binary Search Tree (25) [⼆叉查找树BST]
题目
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The lef subtree of a node contains only nodes with keys less than the node’s key. The right subtree of a node contains only nodes with keys greater than or equal to the node’s key. Both the lef and right subtrees must also be binary search trees. If we swap the lef and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST. Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, first print in a line “YES” if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or “NO” if not. Then if the answer is “YES”, print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input 1:
7
8 6 5 7 10 8 11
Sample Output 1:
YES
5 7 6 8 11 10 8
Sample Input 2:
7
8 10 11 8 6 7 5
Sample Output 2:
YES
11 8 10 7 5 6 8
Sample Input 3:
7
8 6 8 5 10 9 11
Sample Output 3:
NO
题目分析
已知二叉查找树节点序列,判断是其前序序列还是其镜像树的前序序列,并打印相应树的后序序列
解题思路
思路 01
- 输入测试数据时,分别建树和建镜像树
- 先用树的先序序列与原测试序列对比,若同即输出YES,若不同再用镜像树先序序列对比,若同输出YES,不同则NO
- 若为YES,打印相应后序序列
思路 02(最优、难理解)
- 输入测试数据时,建树
- 根据二叉查找树的性质(大于所有左子树节点,小于所有右子树节点)
2.1 获取后序序列,若后序序列中的结点数与原测试用例结点数相同,即为二叉查找树的先序序列打印YES,若不同,清空,并进性镜像树的后序序列获取
2.2 获取镜像树的后序序列结点数,若与原测试用例结点数相同,即为二叉查找树镜像树的先序序列YES,若不同,打印NO - 若为YES,打印相应后序序列
知识点
二叉查找树的前序转后序,无需建树,可根据其性质(大于所有左子树节点,小于所有右子树节点)建树
如前序序列:8 6 5 7 10 8 11
8是根节点
左子树:从6开始往后找小于8的都为8的左子树节点
右子树:从最后一位11开始往前找大于8的都为8的右子树节点
继续递归过程,直到完成建树
Code
Code 01
#include <iostream>
#include <vector>
using namespace std;
struct node {
int data;
node * left=NULL;
node * right=NULL;
node() {}
node(int _data):data(_data) {}
};
node * root,* rootM;
void insert(int n, int b) {
if(root==NULL&&b==0) {
root = new node(n);
return;
}
if(rootM==NULL&&b==1) {
rootM = new node(n);
return;
}
node * p;
if(b==0)p=root;
else p=rootM;
while(p!=NULL) {
if((n<p->data&&b==0)||(n>=p->data&&b==1)) {
if(p->left==NULL) {
p->left=new node(n);
return;
}
p=p->left;
} else if((n>=p->data&&b==0)||(n<p->data&&b==1)) {
if(p->right==NULL) {
p->right=new node(n);
return;
}
p=p->right;
}
}
}
vector<int> origin,pre,post,preM,postM;
void preOrder(node * nd, int b) {
if(nd==NULL)return;
if(b==0)pre.push_back(nd->data);
else preM.push_back(nd->data);
preOrder(nd->left,b);
preOrder(nd->right,b);
}
void postOrder(node * nd, int b) {
if(nd==NULL)return;
postOrder(nd->left,b);
postOrder(nd->right,b);
if(b==0)post.push_back(nd->data);
else postM.push_back(nd->data);
}
int main(int argc,char * argv[]) {
int n,m;
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&m);
origin.push_back(m);
insert(m,0);
insert(m,1);
}
// int flag = -1;//0 前序;1 镜像前序;2 NO
preOrder(root,0);
preOrder(rootM,1);
if(pre==origin) {
postOrder(root,0);
printf("YES\n");
for(int i=0; i<post.size(); i++) {
if(i!=0)printf(" ");
printf("%d",post[i]);
}
} else if(preM==origin) {
if(preM==origin) {
postOrder(rootM,1);
printf("YES\n");
for(int i=0; i<postM.size(); i++) {
if(i!=0)printf(" ");
printf("%d",postM[i]);
}
}
}else{
printf("NO\n");
}
return 0;
}
Code 02(最优、难理解)
#include <iostream>
#include <vector>
using namespace std;
vector<int> pre,post;
bool isMirror;
void getPost(int root, int tail) {
if(root>tail)return;
int i=root+1;
int j=tail;
if(!isMirror) {
while(i<=tail&&pre[i]<pre[root])i++;
while(j>root&&pre[j]>=pre[root])j--;
} else {
while(i<=tail&&pre[i]>=pre[root])i++;
while(j>root&&pre[j]<pre[root])j--;
}
if(i-j!=1)return;
getPost(root+1,j);//左子树
getPost(i,tail); //右子树
post.push_back(pre[root]);
}
int main(int argc,char * argv[]) {
int n,m;
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&m);
pre.push_back(m);
}
getPost(0,n-1);
if(post.size()!=n) {
isMirror=true;
post.clear();
getPost(0,n-1);
}
if(post.size()==n) {
printf("YES\n%d",post[0]);
for(int i=1; i<post.size(); i++) {
printf(" %d",post[i]);
}
} else {
printf("NO\n");
}
return 0;
}
PAT Advanced 1043 Is It a Binary Search Tree (25) [⼆叉查找树BST]的更多相关文章
- PAT Advanced 1099 Build A Binary Search Tree (30) [⼆叉查找树BST]
题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...
- PAT Advanced 1064 Complete Binary Search Tree (30) [⼆叉查找树BST]
题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...
- PAT 甲级 1043 Is It a Binary Search Tree (25 分)(链表建树前序后序遍历)*不会用链表建树 *看不懂题
1043 Is It a Binary Search Tree (25 分) A Binary Search Tree (BST) is recursively defined as a bina ...
- 【PAT】1043 Is It a Binary Search Tree(25 分)
1043 Is It a Binary Search Tree(25 分) A Binary Search Tree (BST) is recursively defined as a binary ...
- PAT 甲级 1043 Is It a Binary Search Tree
https://pintia.cn/problem-sets/994805342720868352/problems/994805440976633856 A Binary Search Tree ( ...
- PAT 1043 Is It a Binary Search Tree (25分) 由前序遍历得到二叉搜索树的后序遍历
题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...
- 1043 Is It a Binary Search Tree (25分)(树的插入)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...
- PAT (Advanced Level) 1043. Is It a Binary Search Tree (25)
简单题.构造出二叉搜索树,然后check一下. #include<stdio.h> #include<algorithm> using namespace std; +; st ...
- PAT (Advanced Level) 1099. Build A Binary Search Tree (30)
预处理每个节点左子树有多少个点. 然后确定值得时候递归下去就可以了. #include<cstdio> #include<cstring> #include<cmath& ...
随机推荐
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 字体图标(Glyphicons):glyphicon glyphicon-stop
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...
- 基础知识 SafeSEH DEP ASLR SEHOP
大多是0day书上抄的 1.SafeSEH 机制: 首先:内存中有SEH表的备份(加密过的) 在调用异常出来函数前,RtlDispatchException()函数中的行为: Ⅰ.检查异常处理链是否位 ...
- Shell脚本之awk篇
目录:一.概述二.awk基本语法格式三.awk基本操作四.awk条件及循环语句五.awk函数六.awk演示示例(源自于man手册) 一.概述 1. 产品概述: awk是一种编程语言,用于在linux/ ...
- C++面试常见问题——01预处理与宏定义
C++面试常见问题--------01预编译和宏的使用 C++预处理器 预处理器是一些指令,它将指示编译器在实际编译之前需要完成的预处理.预处理必须要在对程序进行词法与语义分析.代码生成与优化等通常的 ...
- excel提取数字
部分提取,那么就用=-LOOKUP(,-MID(A1,MIN(FIND({0;1;2;3;4;5;6;7;8;9},A1&1234567890)),ROW($1:$1024))) ------ ...
- BeanUtils使用将一个对象拷贝到另外一个对象
这里的BeanUtils是BeanUtils是org.springframework.beans.BeanUtils,和org.apache.commons.beanutils.BeanUtils是有 ...
- [JZOI]1251.收费站[二分][最短路]
Description 在某个遥远的国家里,有n个城市.编号为1,2,3,--,n. 这个国家的政府修建了m条双向的公路.每条公路连接着两个城市.沿着某条公路,开车从一个城市到另一个城市,需要花费一定 ...
- 十六、SAP中查看数据库
一.我们输入事务代码SE11 二.我们输入数据库表 : “SPFLI” 三.我们可以查看到这个表相关的数据,这个是SAP自带的一个教学案例表. 四.我们点击Display,来查看这个表内容 五.点击查 ...
- 154-PHP strpos函数
<?php $str='passwords'; //定义一个字符串 $position=strpos($str,'s'); //查找字母s第一次出现的位置 echo '字母s的位置是'.$pos ...
- 075-PHP数组添加元素
<?php $arr = array(); //定义一个数组,它没有任何元素 echo '增加元素之前数组中元素的个数为:' . count($arr); //输出数组个数 for ($i = ...