题目

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The lef subtree of a node contains only nodes with keys less than the node’s key. The right subtree of a node contains only nodes with keys greater than or equal to the node’s key. Both the lef and right subtrees must also be binary search trees. If we swap the lef and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST. Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, first print in a line “YES” if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or “NO” if not. Then if the answer is “YES”, print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input 1:

7

8 6 5 7 10 8 11

Sample Output 1:

YES

5 7 6 8 11 10 8

Sample Input 2:

7

8 10 11 8 6 7 5

Sample Output 2:

YES

11 8 10 7 5 6 8

Sample Input 3:

7

8 6 8 5 10 9 11

Sample Output 3:

NO

题目分析

已知二叉查找树节点序列,判断是其前序序列还是其镜像树的前序序列,并打印相应树的后序序列

解题思路

思路 01

  1. 输入测试数据时,分别建树和建镜像树
  2. 先用树的先序序列与原测试序列对比,若同即输出YES,若不同再用镜像树先序序列对比,若同输出YES,不同则NO
  3. 若为YES,打印相应后序序列

思路 02(最优、难理解)

  1. 输入测试数据时,建树
  2. 根据二叉查找树的性质(大于所有左子树节点,小于所有右子树节点)

    2.1 获取后序序列,若后序序列中的结点数与原测试用例结点数相同,即为二叉查找树的先序序列打印YES,若不同,清空,并进性镜像树的后序序列获取

    2.2 获取镜像树的后序序列结点数,若与原测试用例结点数相同,即为二叉查找树镜像树的先序序列YES,若不同,打印NO
  3. 若为YES,打印相应后序序列

知识点

二叉查找树的前序转后序,无需建树,可根据其性质(大于所有左子树节点,小于所有右子树节点)建树

如前序序列:8 6 5 7 10 8 11

8是根节点

左子树:从6开始往后找小于8的都为8的左子树节点

右子树:从最后一位11开始往前找大于8的都为8的右子树节点

继续递归过程,直到完成建树

Code

Code 01

#include <iostream>
#include <vector>
using namespace std;
struct node {
int data;
node * left=NULL;
node * right=NULL;
node() {}
node(int _data):data(_data) {}
};
node * root,* rootM;
void insert(int n, int b) {
if(root==NULL&&b==0) {
root = new node(n);
return;
}
if(rootM==NULL&&b==1) {
rootM = new node(n);
return;
}
node * p;
if(b==0)p=root;
else p=rootM;
while(p!=NULL) {
if((n<p->data&&b==0)||(n>=p->data&&b==1)) {
if(p->left==NULL) {
p->left=new node(n);
return;
}
p=p->left;
} else if((n>=p->data&&b==0)||(n<p->data&&b==1)) {
if(p->right==NULL) {
p->right=new node(n);
return;
}
p=p->right;
}
}
}
vector<int> origin,pre,post,preM,postM;
void preOrder(node * nd, int b) {
if(nd==NULL)return;
if(b==0)pre.push_back(nd->data);
else preM.push_back(nd->data);
preOrder(nd->left,b);
preOrder(nd->right,b);
}
void postOrder(node * nd, int b) {
if(nd==NULL)return;
postOrder(nd->left,b);
postOrder(nd->right,b);
if(b==0)post.push_back(nd->data);
else postM.push_back(nd->data);
}
int main(int argc,char * argv[]) {
int n,m;
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&m);
origin.push_back(m);
insert(m,0);
insert(m,1);
}
// int flag = -1;//0 前序;1 镜像前序;2 NO
preOrder(root,0);
preOrder(rootM,1);
if(pre==origin) {
postOrder(root,0);
printf("YES\n");
for(int i=0; i<post.size(); i++) {
if(i!=0)printf(" ");
printf("%d",post[i]);
}
} else if(preM==origin) {
if(preM==origin) {
postOrder(rootM,1);
printf("YES\n");
for(int i=0; i<postM.size(); i++) {
if(i!=0)printf(" ");
printf("%d",postM[i]);
}
}
}else{
printf("NO\n");
}
return 0;
}

Code 02(最优、难理解)

#include <iostream>
#include <vector>
using namespace std;
vector<int> pre,post;
bool isMirror;
void getPost(int root, int tail) {
if(root>tail)return;
int i=root+1;
int j=tail;
if(!isMirror) {
while(i<=tail&&pre[i]<pre[root])i++;
while(j>root&&pre[j]>=pre[root])j--;
} else {
while(i<=tail&&pre[i]>=pre[root])i++;
while(j>root&&pre[j]<pre[root])j--;
}
if(i-j!=1)return;
getPost(root+1,j);//左子树
getPost(i,tail); //右子树
post.push_back(pre[root]);
}
int main(int argc,char * argv[]) {
int n,m;
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&m);
pre.push_back(m);
}
getPost(0,n-1);
if(post.size()!=n) {
isMirror=true;
post.clear();
getPost(0,n-1);
}
if(post.size()==n) {
printf("YES\n%d",post[0]);
for(int i=1; i<post.size(); i++) {
printf(" %d",post[i]);
}
} else {
printf("NO\n");
}
return 0;
}

PAT Advanced 1043 Is It a Binary Search Tree (25) [⼆叉查找树BST]的更多相关文章

  1. PAT Advanced 1099 Build A Binary Search Tree (30) [⼆叉查找树BST]

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  2. PAT Advanced 1064 Complete Binary Search Tree (30) [⼆叉查找树BST]

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  3. PAT 甲级 1043 Is It a Binary Search Tree (25 分)(链表建树前序后序遍历)*不会用链表建树 *看不懂题

    1043 Is It a Binary Search Tree (25 分)   A Binary Search Tree (BST) is recursively defined as a bina ...

  4. 【PAT】1043 Is It a Binary Search Tree(25 分)

    1043 Is It a Binary Search Tree(25 分) A Binary Search Tree (BST) is recursively defined as a binary ...

  5. PAT 甲级 1043 Is It a Binary Search Tree

    https://pintia.cn/problem-sets/994805342720868352/problems/994805440976633856 A Binary Search Tree ( ...

  6. PAT 1043 Is It a Binary Search Tree (25分) 由前序遍历得到二叉搜索树的后序遍历

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  7. 1043 Is It a Binary Search Tree (25分)(树的插入)

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  8. PAT (Advanced Level) 1043. Is It a Binary Search Tree (25)

    简单题.构造出二叉搜索树,然后check一下. #include<stdio.h> #include<algorithm> using namespace std; +; st ...

  9. PAT (Advanced Level) 1099. Build A Binary Search Tree (30)

    预处理每个节点左子树有多少个点. 然后确定值得时候递归下去就可以了. #include<cstdio> #include<cstring> #include<cmath& ...

随机推荐

  1. leetcode349 350 Intersection of Two Arrays & II

    """ Intersection of Two Arrays Given two arrays, write a function to compute their in ...

  2. python基础数据类型--列表(list)

    python基础数据类型--列表(list) 列表是我们在后面经常用到的数据类型之一,通过列表可以对数据类型进行增.删.改.查等操作 一列表的增.删.改.查 1增: 1.1增加到最后   append ...

  3. ffmpeg 多路实时问题之解决思路

     记得前面有人提出多路视频不实时问题,这个首先需要从网络带宽上查看是否视频帧全实时的到达,还有一个问题就是,即使视频帧全部到达,看起CPU也是足够的,但是却表现为慢镜头这种样子,那么很可能是解码显示的 ...

  4. 简单总结Get与Post的区别

    工作当中经常遇到这两种类型的接口,也会被问到这两种类型的区别,这里简单总结一下算是一个简单的回忆吧. GET和POST是http协议的两种发送请求的方法.因为http的底层是TCP/IP,所以GET和 ...

  5. SpringBoot#Download

    _amaze! 如果不使用fastdfs等分布式的文件存储,有时候还是需要上传文件到web应用所在的服务器的磁盘上,下载文件.下面是一个小demo,关于如何用控制器进行上传和下载. - @PostMa ...

  6. Tomcat添加SSL安全认证

    环境 Tomcat7.阿里SSL证书 server.xml <Connector port="443" protocol="org.apache.coyote.ht ...

  7. 十三、JavaScript之跨多行的变量申明

    一.代码如下 二.运行效果 <!DOCTYPE html> <html> <meta http-equiv="Content-Type" conten ...

  8. 仿淘宝 vue

    最近自己闲着无聊,用vue仿照淘宝打算写个皮囊,顺便把遇到的问题顺便记录下 1.动画问题 (1)单个元素给动画 <transition name="fade">< ...

  9. POJ - 3349 Snowflake Snow Snowflakes (哈希)

    题意:给定n(0 < n ≤ 100000)个雪花,每个雪花有6个花瓣(花瓣具有一定的长度),问是否存在两个相同的雪花.若两个雪花以某个花瓣为起点顺时针或逆时针各花瓣长度依次相同,则认为两花瓣相 ...

  10. EE将于5月30日在英国推出首个5G网络

    英国移动运营商 EE 宣布计划于周三在英国推出 5G,该网络将于 5 月 30 日开通,第一批 5G 手机可从今天开始预订.EE 最初的 5G 网络部署将集中在六个城市(伦敦,加的夫,爱丁堡,贝尔法斯 ...