题目

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The lef subtree of a node contains only nodes with keys less than the node’s key. The right subtree of a node contains only nodes with keys greater than or equal to the node’s key. Both the lef and right subtrees must also be binary search trees. If we swap the lef and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST. Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, first print in a line “YES” if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or “NO” if not. Then if the answer is “YES”, print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input 1:

7

8 6 5 7 10 8 11

Sample Output 1:

YES

5 7 6 8 11 10 8

Sample Input 2:

7

8 10 11 8 6 7 5

Sample Output 2:

YES

11 8 10 7 5 6 8

Sample Input 3:

7

8 6 8 5 10 9 11

Sample Output 3:

NO

题目分析

已知二叉查找树节点序列,判断是其前序序列还是其镜像树的前序序列,并打印相应树的后序序列

解题思路

思路 01

  1. 输入测试数据时,分别建树和建镜像树
  2. 先用树的先序序列与原测试序列对比,若同即输出YES,若不同再用镜像树先序序列对比,若同输出YES,不同则NO
  3. 若为YES,打印相应后序序列

思路 02(最优、难理解)

  1. 输入测试数据时,建树
  2. 根据二叉查找树的性质(大于所有左子树节点,小于所有右子树节点)

    2.1 获取后序序列,若后序序列中的结点数与原测试用例结点数相同,即为二叉查找树的先序序列打印YES,若不同,清空,并进性镜像树的后序序列获取

    2.2 获取镜像树的后序序列结点数,若与原测试用例结点数相同,即为二叉查找树镜像树的先序序列YES,若不同,打印NO
  3. 若为YES,打印相应后序序列

知识点

二叉查找树的前序转后序,无需建树,可根据其性质(大于所有左子树节点,小于所有右子树节点)建树

如前序序列:8 6 5 7 10 8 11

8是根节点

左子树:从6开始往后找小于8的都为8的左子树节点

右子树:从最后一位11开始往前找大于8的都为8的右子树节点

继续递归过程,直到完成建树

Code

Code 01

#include <iostream>
#include <vector>
using namespace std;
struct node {
int data;
node * left=NULL;
node * right=NULL;
node() {}
node(int _data):data(_data) {}
};
node * root,* rootM;
void insert(int n, int b) {
if(root==NULL&&b==0) {
root = new node(n);
return;
}
if(rootM==NULL&&b==1) {
rootM = new node(n);
return;
}
node * p;
if(b==0)p=root;
else p=rootM;
while(p!=NULL) {
if((n<p->data&&b==0)||(n>=p->data&&b==1)) {
if(p->left==NULL) {
p->left=new node(n);
return;
}
p=p->left;
} else if((n>=p->data&&b==0)||(n<p->data&&b==1)) {
if(p->right==NULL) {
p->right=new node(n);
return;
}
p=p->right;
}
}
}
vector<int> origin,pre,post,preM,postM;
void preOrder(node * nd, int b) {
if(nd==NULL)return;
if(b==0)pre.push_back(nd->data);
else preM.push_back(nd->data);
preOrder(nd->left,b);
preOrder(nd->right,b);
}
void postOrder(node * nd, int b) {
if(nd==NULL)return;
postOrder(nd->left,b);
postOrder(nd->right,b);
if(b==0)post.push_back(nd->data);
else postM.push_back(nd->data);
}
int main(int argc,char * argv[]) {
int n,m;
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&m);
origin.push_back(m);
insert(m,0);
insert(m,1);
}
// int flag = -1;//0 前序;1 镜像前序;2 NO
preOrder(root,0);
preOrder(rootM,1);
if(pre==origin) {
postOrder(root,0);
printf("YES\n");
for(int i=0; i<post.size(); i++) {
if(i!=0)printf(" ");
printf("%d",post[i]);
}
} else if(preM==origin) {
if(preM==origin) {
postOrder(rootM,1);
printf("YES\n");
for(int i=0; i<postM.size(); i++) {
if(i!=0)printf(" ");
printf("%d",postM[i]);
}
}
}else{
printf("NO\n");
}
return 0;
}

Code 02(最优、难理解)

#include <iostream>
#include <vector>
using namespace std;
vector<int> pre,post;
bool isMirror;
void getPost(int root, int tail) {
if(root>tail)return;
int i=root+1;
int j=tail;
if(!isMirror) {
while(i<=tail&&pre[i]<pre[root])i++;
while(j>root&&pre[j]>=pre[root])j--;
} else {
while(i<=tail&&pre[i]>=pre[root])i++;
while(j>root&&pre[j]<pre[root])j--;
}
if(i-j!=1)return;
getPost(root+1,j);//左子树
getPost(i,tail); //右子树
post.push_back(pre[root]);
}
int main(int argc,char * argv[]) {
int n,m;
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&m);
pre.push_back(m);
}
getPost(0,n-1);
if(post.size()!=n) {
isMirror=true;
post.clear();
getPost(0,n-1);
}
if(post.size()==n) {
printf("YES\n%d",post[0]);
for(int i=1; i<post.size(); i++) {
printf(" %d",post[i]);
}
} else {
printf("NO\n");
}
return 0;
}

PAT Advanced 1043 Is It a Binary Search Tree (25) [⼆叉查找树BST]的更多相关文章

  1. PAT Advanced 1099 Build A Binary Search Tree (30) [⼆叉查找树BST]

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  2. PAT Advanced 1064 Complete Binary Search Tree (30) [⼆叉查找树BST]

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  3. PAT 甲级 1043 Is It a Binary Search Tree (25 分)(链表建树前序后序遍历)*不会用链表建树 *看不懂题

    1043 Is It a Binary Search Tree (25 分)   A Binary Search Tree (BST) is recursively defined as a bina ...

  4. 【PAT】1043 Is It a Binary Search Tree(25 分)

    1043 Is It a Binary Search Tree(25 分) A Binary Search Tree (BST) is recursively defined as a binary ...

  5. PAT 甲级 1043 Is It a Binary Search Tree

    https://pintia.cn/problem-sets/994805342720868352/problems/994805440976633856 A Binary Search Tree ( ...

  6. PAT 1043 Is It a Binary Search Tree (25分) 由前序遍历得到二叉搜索树的后序遍历

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  7. 1043 Is It a Binary Search Tree (25分)(树的插入)

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  8. PAT (Advanced Level) 1043. Is It a Binary Search Tree (25)

    简单题.构造出二叉搜索树,然后check一下. #include<stdio.h> #include<algorithm> using namespace std; +; st ...

  9. PAT (Advanced Level) 1099. Build A Binary Search Tree (30)

    预处理每个节点左子树有多少个点. 然后确定值得时候递归下去就可以了. #include<cstdio> #include<cstring> #include<cmath& ...

随机推荐

  1. Django(三) 模型:ORM框架、定义模型类并创建一个对应的数据库、配置Mysql数据库

    一.模型概述 https://docs.djangoproject.com/zh-hans/3.0/intro/tutorial02/ https://www.runoob.com/django/dj ...

  2. 每天一点点之vue框架学习 - uni-app 修改上一页参数

    方法一:使用微信提供的 getCurrentPages() 来实现 // 更新上一级的数据 getPrevData(){ var pages = getCurrentPages(); var curr ...

  3. C++实现单链表的12种基本操作

    C++单链表的操作2017-12-25 1 // 单链表.cpp: 定义控制台应用程序的入口点. //Author:kgvito //Date: 2017.12.25 #include "s ...

  4. PATH环境 变量

    PATH环境 变量 $HOME/.bash_profile和/etc/profile 两个文件在登陆用户的时候会执行, /etc/profile 所有用户都执行,$HOME/.bash_profile ...

  5. Windows平台整合SpringBoot+KAFKA__第2部分_代码编写前传

    开始准备写测试代码 看半天不太懂(我也算是小白级别的,看我搞windows版本的kafka就知道了), 看文档无聊,偶然看到一个KAFKA的windows管理程序,于是就试试就装了一个,感觉那个玩意也 ...

  6. 二十一、SAP中通过内表输出数据库中数据

    一.我们查看一个SCARR的一个数据库 二.数据库内容如下 三.我们写一个关于内表使用的代码,来显示这个数据库内容 四.输出如下

  7. C#路径2

    String apppath = System.Reflection.Assembly.GetExecutingAssembly().GetName().CodeBase; //获取整个文件路径名ap ...

  8. RobotFramwork中实现oracle数据库的连接(终于解决cx_oracle问题)

    RobotFramework连接数据库有java实现,也有python实现的,现在研究的python实现的,java还没尝试.有兴趣的参考后面的转载文章.     步骤(也转载了别人的文章,因为写的比 ...

  9. Node.js的启动和调试方式

    通过node命令启动 node server/bin/www webstorm配置启动入口 pm2 全局安装:cnpm i pm2 -g 检查版本:pm2 -v 启动:cd 项目目录 pm2 star ...

  10. Dubbo与SpringCloud

    dubbo和springcloud都是微服务框架,各自有各自的注册中心. dubbo监控中心:zookeeper,redis 提供高性能和透明化的RPC远程调用方案,SOA服务治理方案. 核心部分: ...