PAT Advanced 1043 Is It a Binary Search Tree (25) [⼆叉查找树BST]
题目
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The lef subtree of a node contains only nodes with keys less than the node’s key. The right subtree of a node contains only nodes with keys greater than or equal to the node’s key. Both the lef and right subtrees must also be binary search trees. If we swap the lef and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST. Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, first print in a line “YES” if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or “NO” if not. Then if the answer is “YES”, print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input 1:
7
8 6 5 7 10 8 11
Sample Output 1:
YES
5 7 6 8 11 10 8
Sample Input 2:
7
8 10 11 8 6 7 5
Sample Output 2:
YES
11 8 10 7 5 6 8
Sample Input 3:
7
8 6 8 5 10 9 11
Sample Output 3:
NO
题目分析
已知二叉查找树节点序列,判断是其前序序列还是其镜像树的前序序列,并打印相应树的后序序列
解题思路
思路 01
- 输入测试数据时,分别建树和建镜像树
- 先用树的先序序列与原测试序列对比,若同即输出YES,若不同再用镜像树先序序列对比,若同输出YES,不同则NO
- 若为YES,打印相应后序序列
思路 02(最优、难理解)
- 输入测试数据时,建树
- 根据二叉查找树的性质(大于所有左子树节点,小于所有右子树节点)
2.1 获取后序序列,若后序序列中的结点数与原测试用例结点数相同,即为二叉查找树的先序序列打印YES,若不同,清空,并进性镜像树的后序序列获取
2.2 获取镜像树的后序序列结点数,若与原测试用例结点数相同,即为二叉查找树镜像树的先序序列YES,若不同,打印NO - 若为YES,打印相应后序序列
知识点
二叉查找树的前序转后序,无需建树,可根据其性质(大于所有左子树节点,小于所有右子树节点)建树
如前序序列:8 6 5 7 10 8 11
8是根节点
左子树:从6开始往后找小于8的都为8的左子树节点
右子树:从最后一位11开始往前找大于8的都为8的右子树节点
继续递归过程,直到完成建树
Code
Code 01
#include <iostream>
#include <vector>
using namespace std;
struct node {
int data;
node * left=NULL;
node * right=NULL;
node() {}
node(int _data):data(_data) {}
};
node * root,* rootM;
void insert(int n, int b) {
if(root==NULL&&b==0) {
root = new node(n);
return;
}
if(rootM==NULL&&b==1) {
rootM = new node(n);
return;
}
node * p;
if(b==0)p=root;
else p=rootM;
while(p!=NULL) {
if((n<p->data&&b==0)||(n>=p->data&&b==1)) {
if(p->left==NULL) {
p->left=new node(n);
return;
}
p=p->left;
} else if((n>=p->data&&b==0)||(n<p->data&&b==1)) {
if(p->right==NULL) {
p->right=new node(n);
return;
}
p=p->right;
}
}
}
vector<int> origin,pre,post,preM,postM;
void preOrder(node * nd, int b) {
if(nd==NULL)return;
if(b==0)pre.push_back(nd->data);
else preM.push_back(nd->data);
preOrder(nd->left,b);
preOrder(nd->right,b);
}
void postOrder(node * nd, int b) {
if(nd==NULL)return;
postOrder(nd->left,b);
postOrder(nd->right,b);
if(b==0)post.push_back(nd->data);
else postM.push_back(nd->data);
}
int main(int argc,char * argv[]) {
int n,m;
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&m);
origin.push_back(m);
insert(m,0);
insert(m,1);
}
// int flag = -1;//0 前序;1 镜像前序;2 NO
preOrder(root,0);
preOrder(rootM,1);
if(pre==origin) {
postOrder(root,0);
printf("YES\n");
for(int i=0; i<post.size(); i++) {
if(i!=0)printf(" ");
printf("%d",post[i]);
}
} else if(preM==origin) {
if(preM==origin) {
postOrder(rootM,1);
printf("YES\n");
for(int i=0; i<postM.size(); i++) {
if(i!=0)printf(" ");
printf("%d",postM[i]);
}
}
}else{
printf("NO\n");
}
return 0;
}
Code 02(最优、难理解)
#include <iostream>
#include <vector>
using namespace std;
vector<int> pre,post;
bool isMirror;
void getPost(int root, int tail) {
if(root>tail)return;
int i=root+1;
int j=tail;
if(!isMirror) {
while(i<=tail&&pre[i]<pre[root])i++;
while(j>root&&pre[j]>=pre[root])j--;
} else {
while(i<=tail&&pre[i]>=pre[root])i++;
while(j>root&&pre[j]<pre[root])j--;
}
if(i-j!=1)return;
getPost(root+1,j);//左子树
getPost(i,tail); //右子树
post.push_back(pre[root]);
}
int main(int argc,char * argv[]) {
int n,m;
scanf("%d",&n);
for(int i=0; i<n; i++) {
scanf("%d",&m);
pre.push_back(m);
}
getPost(0,n-1);
if(post.size()!=n) {
isMirror=true;
post.clear();
getPost(0,n-1);
}
if(post.size()==n) {
printf("YES\n%d",post[0]);
for(int i=1; i<post.size(); i++) {
printf(" %d",post[i]);
}
} else {
printf("NO\n");
}
return 0;
}
PAT Advanced 1043 Is It a Binary Search Tree (25) [⼆叉查找树BST]的更多相关文章
- PAT Advanced 1099 Build A Binary Search Tree (30) [⼆叉查找树BST]
题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...
- PAT Advanced 1064 Complete Binary Search Tree (30) [⼆叉查找树BST]
题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...
- PAT 甲级 1043 Is It a Binary Search Tree (25 分)(链表建树前序后序遍历)*不会用链表建树 *看不懂题
1043 Is It a Binary Search Tree (25 分) A Binary Search Tree (BST) is recursively defined as a bina ...
- 【PAT】1043 Is It a Binary Search Tree(25 分)
1043 Is It a Binary Search Tree(25 分) A Binary Search Tree (BST) is recursively defined as a binary ...
- PAT 甲级 1043 Is It a Binary Search Tree
https://pintia.cn/problem-sets/994805342720868352/problems/994805440976633856 A Binary Search Tree ( ...
- PAT 1043 Is It a Binary Search Tree (25分) 由前序遍历得到二叉搜索树的后序遍历
题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...
- 1043 Is It a Binary Search Tree (25分)(树的插入)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...
- PAT (Advanced Level) 1043. Is It a Binary Search Tree (25)
简单题.构造出二叉搜索树,然后check一下. #include<stdio.h> #include<algorithm> using namespace std; +; st ...
- PAT (Advanced Level) 1099. Build A Binary Search Tree (30)
预处理每个节点左子树有多少个点. 然后确定值得时候递归下去就可以了. #include<cstdio> #include<cstring> #include<cmath& ...
随机推荐
- Vuex源码分析(转)
当我们用vue在开发的过程中,经常会遇到以下问题 多个vue组件共享状态 Vue组件间的通讯 在项目不复杂的时候,我们会利用全局事件bus的方式解决,但随着复杂度的提升,用这种方式将会使得代码难以维护 ...
- C# Winform使用线程,委托定时更新界面UI控件,解决界面卡顿问题(转载)
一.定时执行主界面控件值 1.利用定时器 Thread t = null; private void InitTSJK() { t = new Thread(new ThreadStart(GetDa ...
- python基础数据类型--集合(set)
python基础数据类型--集合(set) 集合是一个数学概念由一个或多个确定的元素所构成的整体叫做集合 集合中的三个特征 1.确定性(元素必须死可hash) 2.互异性(去重) 3.无序性(集合中的 ...
- 每天一点点之vue框架学习 - uni-app 修改上一页参数
方法一:使用微信提供的 getCurrentPages() 来实现 // 更新上一级的数据 getPrevData(){ var pages = getCurrentPages(); var curr ...
- 十、React 父组件传来值的类型控制propTypes、父组件如果不传值defaultProps
父组件给子组件传值时: 1.defaultProps:父子组件传值中,如果父组件调用子组件的时候不给子组件传值,可以在子组件中使用defaultProps定义的默认值: 2.propTypes:验证父 ...
- ThinkPHP 5.0远程命令执行漏洞分析与复现
0x00 前言 ThinkPHP官方2018年12月9日发布重要的安全更新,修复了一个严重的远程代码执行漏洞.该更新主要涉及一个安全更新,由于框架对控制器名没有进行足够的检测会导致在没有开启强制路由的 ...
- 自定义 radio 的样式,更改选中样式
思路: 1. 可以为<label>元素添加生成性内容(伪元素),并基于单选按钮的状态来为其设置样式: 2. 然后把真正的单选按钮隐藏起来: 3. 最后把生成内容美化一下. 解决方法: ...
- C++ 内存映射
HANDLE hFile = NULL;HANDLE hFileMap = NULL;const viewmapsize = 8 * 1024 * 1024;//8mDWORD highsize,lo ...
- Dubbo与SpringCloud
dubbo和springcloud都是微服务框架,各自有各自的注册中心. dubbo监控中心:zookeeper,redis 提供高性能和透明化的RPC远程调用方案,SOA服务治理方案. 核心部分: ...
- VNC连接桌面
1.#yum -y install vnc *vnc-server* 2.修改VNCServer主配置文件 #vim /etc/sysconfig/vncservers 复制最后两行并去掉行首注释符, ...