#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#include <stack>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAXN = 110; int n, m; // n:节点个数, m:边的个数
int g[MAXN][MAXN]; // 无向图
int dist[MAXN][MAXN]; // 最短路径
int r[MAXN][MAXN]; // r[i][j]: i到j的最短路径的第一步
int out[MAXN], ct; // 记录最小环 int solve(int i, int j, int k)
{ // 记录最小环
ct = 0;
while (j != i)
{
out[ct++] = j;
j = r[i][j];
}
out[ct++] = i;
out[ct++] = k;
return 0;
} int main()
{
while (scanf("%d%d", &n, &m) != EOF)
{
int i, j, k;
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
g[i][j] = INF;
r[i][j] = i;
}
}
for (i = 0; i < m; i++)
{
int x, y, l;
scanf("%d%d%d", &x, &y, &l);
--x;
--y;
if (l < g[x][y])
{
g[x][y] = g[y][x] = l;
}
}
memmove(dist, g, sizeof(dist));
int Min = INF; // 最小环
for (k = 0; k < n; k++)
{ // Floyd
for (i = 0; i < k; i++) // 一个环中的最大结点为k(编号最大)
{
if (g[k][i] < INF)
{
for (j = i + 1; j < k; j++)
{
if (dist[i][j] < INF && g[k][j] < INF && Min > dist[i][j] + g[k][i] + g[k][j])
{
Min = dist[i][j] + g[k][i] + g[k][j];
solve(i, j, k); // 记录最小环
}
}
}
}
for (i = 0; i < n; i++)
{
if (dist[i][k] < INF)
{
for (j = 0; j < n; j++)
{
if (dist[k][j] < INF && dist[i][j] > dist[i][k]+dist[k][j])
{
dist[i][j] = dist[i][k] + dist[k][j];
r[i][j] = r[k][j];
}
}
}
}
}
if (Min < INF)
{
for (ct--; ct >= 0; ct--)
{
printf("%d", out[ct] + 1);
if (ct)
{
printf(" ");
}
}
}
else
{
printf("No solution.");
}
printf("\n");
} return 0;
}

图论--最小环--Floyd模板的更多相关文章

  1. 图论--传递闭包(Floyd模板)

    #include<iostream> #include<cstring> #include<cmath> using namespace std; int dp[1 ...

  2. Floyd判最小环算法模板

    算法思想:如果存在最小环,会在编号最大的点u更新最短路径前找到这个环,发现的方法是,更新最短路径前,遍历i,j点对,一定会发现某对i到j的最短路径长度dis[i][j]+mp[j][u]+mp[u][ ...

  3. 图论---POJ 3660 floyd 算法(模板题)

    是一道floyd变形的题目.题目让确定有几个人的位置是确定的,如果一个点有x个点能到达此点,从该点出发能到达y个点,若x+y=n-1,则该点的位置是确定的.用floyd算发出每两个点之间的距离,最后统 ...

  4. 图论-最短路径<Dijkstra,Floyd>

    昨天: 图论-概念与记录图的方法 以上是昨天的Blog,有需要者请先阅读完以上再阅读今天的Blog. 可能今天的有点乱,好好理理,认真看完相信你会懂得 分割线 第二天 引子:昨天我们简单讲了讲图的概念 ...

  5. timus1004 最小环()Floyd 算法

    通过别人的数据搞了好久才成功,果然还是不够成熟 做题目还是算法不能融会贯通 大意即找出图中至少3个顶点的环,且将环中点按顺序输出 用floyd算法求最小环 因为floyd算法求最短路径是通过中间量k的 ...

  6. 图论 Warshall 和Floyd 矩阵传递闭包

    首先我们先说下图论,一般图存储可以使用邻接矩阵,或邻接表,一般使用邻接矩阵在稠密图比较省空间. 我们来说下有向图,一般的有向图也是图,图可以分为稠密图,稀疏图,那么从意思上,稠密图就是点的边比较多,稀 ...

  7. 图论之最短路径floyd算法

    Floyd算法是图论中经典的多源最短路径算法,即求任意两点之间的最短路径. 它可采用动态规划思想,因为它满足最优子结构性质,即最短路径序列的子序列也是最短路径. 举例说明最优子结构性质,上图中1号到5 ...

  8. 图的连通性问题之连通和最小环——Floyd算法

    Floyd 判断连通性 d[i][j]仅表示i,j之间是否联通 ;k<=n;k++) ;i<=n;i++) ;j<=n;j++) dis[i][j]=dis[i][j]||(dis[ ...

  9. 最小环-Floyd

    floyd求最小环 在Floyd的同时,顺便算出最小环. Floyd算法 :k<=n:k++) { :i<k:i++) :j<k:j++) if(d[i][j]+m[i][k]+m[ ...

随机推荐

  1. grub2手动引导linux

    仅需要三个命令 1.set root=(hd*,gpt*) hd*为系统所在磁盘,从0开始: gpt为磁盘分区表格式,*为第几分区,mbr分区表为msdos*: 2.linux /boot/vmlin ...

  2. Struts2-学习笔记系列(14)-拦截器

    6.1对action 的拦截 自定义拦截器: public class MyInterceptor extends AbstractInterceptor { private String name; ...

  3. 从零搭建一个SpringCloud项目之Config(五)

    配置中心 一.配置中心服务端 新建项目study-config-server 引入依赖 <dependency> <groupId>org.springframework.cl ...

  4. Github上面拉取别人提交的PR

    在github上面协同开发,避免不了拉取别的同学的PR,那么如何拉取呢? 1.首先我们看下upstream liz@liz-PC:~/jimeng/handle-api$ git remote -v ...

  5. shell执行${var:m:n}报错Bad substitution解决办法

    Ubuntu系统下,执行字符串截取脚本时,总是报错:Bad substitution,脚本非常简单如下: #!/bin/sh str1="hello world!" :} 执行后报 ...

  6. Codeup 25593 Problem G 例题5-7 求圆周率pi的近似值

    题目描述 用如下公式 4*Π = 1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 + 1/13 - 1/15 - 求圆周率PI的近似值,直到发现某一项的绝对值小于10-6为止(该项不 ...

  7. Hadoop学习笔记(2)-HDFS的基本操作(Shell命令)

    在这里我给大家继续分享一些关于HDFS分布式文件的经验哈,其中包括一些hdfs的基本的shell命令的操作,再加上hdfs java程序设计.在前面我已经写了关于如何去搭建hadoop这样一个大数据平 ...

  8. L3 多层感知机

    **本小节用到的数据下载 1.涉及语句 import d2lzh1981 as d2l 数据1 : d2lzh1981 链接:https://pan.baidu.com/s/1LyaZ84Q4M75G ...

  9. 安全测试-WEB安全渗透测试基础知识(四)

    .4. HTTP标准 1.4.1. 报文格式 1.4.1.1. 请求报文格式 <method><request-URL><version> <headers& ...

  10. 在vue中使用ztree树插件

    插件资源及api:树官网 本事例是在vue3.0+中演示,事例是实际项目中正在用的组件所以部分打了马赛克. 1.插件准备(提前准备好插件文件) 可以直接在官网下载,搭建好脚手架后将准备好的文件放在li ...