题意:给你一颗树,然后这颗树有n*n条路径,a->b和b->a算是一条,然后路径的权值是 vi*(-1)^(i+1)  注意是点有权值。

从上头往下考虑是点分治,从下向上考虑就是树形DP,分成三类路径:1.指定点单点 2.跨过指定点3.没跨过指定点但不是单点

细节要好好打磨一下,然后还是用long long比较稳 ,1LL*还是有点危险.

点分治:

#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2e5+;
const int P=1e9+;
vector<int>G[N];
bool vis[N];
int SQ,SO,Q,O,q[N],o[N],rt,m,nq[N],no[N],sz[N],v[N],mx[N],ans;
void dfs(int u,int fa,int S){
sz[u]=mx[u]=;
q[u]=o[u]=no[u]=nq[u]=;
for(int i=;i<(int)G[u].size();++i) {
int v=G[u][i];
if(vis[v]||v==fa) continue;
dfs(v,u,S);
sz[u]+=sz[v];
mx[u]=max(mx[u],sz[v]);
}
mx[u]=max(mx[u],S-sz[u]);
if(m>mx[u]) rt=u,m=mx[u];
}
void solve(int u,int nv,int f,int fa,int last){
int t=(nv+f*v[u])%P;
if(f==-) o[fa]=(o[fa]+t)%P,O=(O+t)%P,++no[fa],++SO;
else q[fa]=(q[fa]+t)%P,Q=(Q+t)%P,++nq[fa],++SQ;
for(int i=;i<(int)G[u].size();++i) {
int v=G[u][i];
if(v==last||vis[v]) continue;
solve(v,t,-f,fa,u);
}
}
int work(int u,int S){
m=1e9+;
dfs(u,,S);
vis[rt]=;
Q=O=SQ=SO=;
for(int i=;i<(int)G[rt].size();++i) if(!vis[G[rt][i]]) solve(G[rt][i],v[rt],-,G[rt][i],rt);
for(int i=;i<(int)G[rt].size();++i) if(!vis[G[rt][i]]){
int t=G[rt][i];
ans=((ans-1LL*no[t]*(O-o[t])%P)%P-1LL*o[t]*(SO-no[t])%P)%P;
ans=(ans+1LL*no[t]*(SO-no[t])%P*v[rt]%P)%P;
ans=((ans+1LL*nq[t]*(Q-q[t])%P)%P+1LL*q[t]*(SQ-nq[t])%P)%P;
ans=(ans-1LL*nq[t]*(SQ-nq[t])%P*v[rt]%P)%P;
ans=(ans+(q[t]<<)%P)%P;
}
ans=((ans+v[rt])%P+P)%P;
int nt=rt;
for(int i=;i<(int)G[nt].size();++i) if(!vis[G[nt][i]])
work(G[nt][i],sz[G[nt][i]]>sz[nt]?S-sz[nt]:sz[G[nt][i]]);
}
int main(){
int n,x,y;
scanf("%d",&n);
for(int i=;i<=n;++i) scanf("%d",v+i);
for(int i=;i<n;++i) {
scanf("%d%d",&x,&y);
G[x].push_back(y);
G[y].push_back(x);
}
work(,n);
printf("%d\n",(ans+P)%P);
}

树形DP的思路是参考的这里

#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2e5+;
const int P=1e9+;
vector<int>G[N];
long long dp[N][],num[N][],ans,v[N];
void dfs(int u,int fa){
for(int i=;i<(int)G[u].size();++i) {
int vt=G[u][i];
if(vt==fa) continue;
dfs(vt,u);
dp[u][]=(((dp[u][]+dp[vt][])%P-1LL*v[u]*num[vt][]%P)%P+P)%P;
dp[u][]=(((dp[u][]+dp[vt][])%P+1LL*v[u]*num[vt][]%P)%P+P)%P;
num[u][]=(num[u][]+num[vt][])%P;
num[u][]=(num[u][]+num[vt][])%P;
}
for(int i=;i<(int)G[u].size();++i) {
int vt=G[u][i];
if(vt==fa) continue;
ans=(ans+2LL*(num[u][]-num[vt][])%P*dp[vt][]%P+1LL*(num[u][]-num[vt][])*v[u]%P*num[vt][]%P)%P;
ans=(ans+2LL*(num[u][]-num[vt][])%P*dp[vt][]%P-1LL*(num[u][]-num[vt][])*v[u]%P*num[vt][]%P)%P;
}
ans=(ans+(dp[u][]<<)%P+v[u])%P;
++num[u][];
num[u][]%=P;
dp[u][]=(dp[u][]+v[u])%P;
}
int main(){
int n,x,y;
scanf("%d",&n);
for(int i=;i<=n;++i) scanf("%lld",v+i);
for(int i=;i<n;++i) {
scanf("%d%d",&x,&y);
G[x].push_back(y);
G[y].push_back(x);
}
dfs(,);
printf("%lld\n",(ans+P)%P);
}

E. Alternating Tree 树点分治|树形DP的更多相关文章

  1. 算法笔记--树的直径 && 树形dp && 虚树 && 树分治 && 树上差分 && 树链剖分

    树的直径: 利用了树的直径的一个性质:距某个点最远的叶子节点一定是树的某一条直径的端点. 先从任意一顶点a出发,bfs找到离它最远的一个叶子顶点b,然后再从b出发bfs找到离b最远的顶点c,那么b和c ...

  2. (中等) HDU 5293 Tree chain problem,树链剖分+树形DP。

    Problem Description   Coco has a tree, whose vertices are conveniently labeled by 1,2,…,n.There are ...

  3. [集训队作业2018]蜀道难——TopTree+贪心+树链剖分+链分治+树形DP

    题目链接: [集训队作业2018]蜀道难 题目大意:给出一棵$n$个节点的树,要求给每个点赋一个$1\sim n$之内的权值使所有点的权值是$1\sim n$的一个排列,定义一条边的权值为两端点权值差 ...

  4. CF F - Tree with Maximum Cost (树形DP)给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大。输出最大的值。

    题目意思: 给出你一颗带点权的树,dist(i, j)的值为节点i到j的距离乘上节点j的权值,让你任意找一个节点v,使得dist(v, i) (1 < i < n)的和最大.输出最大的值. ...

  5. [codeforces161D]Distance in Tree(点分治/树形dp)

    题意:求树上距离为k的点对个数: 解题关键:练习一下点分治不用容斥 而直接做的做法.注意先查询,后更新. 不过这个方法有个缺陷,每次以一个新节点为根,必须memset mp数组,或许使用map会好些, ...

  6. 『You Are Given a Tree 整体分治 树形dp』

    You Are Given a Tree Description A tree is an undirected graph with exactly one simple path between ...

  7. [BZOJ2152]聪聪可可 点分治/树形dp

    2152: 聪聪可可 Time Limit: 3 Sec  Memory Limit: 259 MB Submit: 3602  Solved: 1858 [Submit][Status][Discu ...

  8. BZOJ 2152 / Luogu P2634 [国家集训队]聪聪可可 (点分治/树形DP)

    题意 一棵树,给定边权,求满足两点之间的路径上权值和为3的倍数的点对数量. 分析 点分治板题,对每个重心求子树下面的到根的距离模3分别为0,1,2的点的个数就行了. O(3nlogn)O(3nlogn ...

  9. 2014 Super Training #9 E Destroy --树的直径+树形DP

    原题: ZOJ 3684 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3684 题意: 给你一棵树,树的根是树的中心(到其 ...

随机推荐

  1. MYSQL 索引汇总

    1.MySQL索引类型 先分以下类,MYQL有两大类索引:聚集索引和非聚集索引(只考虑mysql innodb) 聚集索引:在有主键的情况下,主键为聚集索引,其他都是非聚集索引             ...

  2. python- 函数高级

    函数高级 一.默认参数 1.默认参数概念 默认参数指函数/方法在定义时为形参赋值,对应的形参称为默认参数. 默认参数是一个参数定义期的概念,与调用无关. 2.默认参数的作用 如果参数定义默认参数,在调 ...

  3. python 多进程处理 multiprocessing模块

    前提: 有时候一个用一个进程处理一个列表中的每个元素(每个元素要传递到一个函数中进行处理),这个时候就要用多进程处理 1 现场案例: 我有一个[ip1,ip2,ip3,.......]这样的列表,我要 ...

  4. 图论--2-SAT--暴力染色法求字典序最小模版

    #include <cstdio> #include <cstring> #include <stack> #include <queue> #incl ...

  5. TensorRT入门

    本文转载于:子棐之GPGPU 的 TensorRT系列入门篇 学习一下加深印象 Why TensorRT 训练对于深度学习来说是为了获得一个性能优异的模型,其主要的关注点在与模型的准确度.精度等指标. ...

  6. LateX公式表

    转载自xkgjfl 话说为什么LateX公式这么难记 markdown最全数学公式 我们在用markdown写文档时有时候少不了需要插入一些公式,然而markdown公式输入远没有word这么直观,有 ...

  7. while(scanf("%d",&n)!=EOF) / while(cin>>n)终止问题

    问题的发现:(想要看干货可以直接跳过这段) 我最近刚了解到关于栈的用法,于是按照参考书寻找代码,并把它敲到电脑上.编译运行代码后发现无法终止,在网上查找各种资料,总结如下. 因为我的电脑是Window ...

  8. NEON的比较是把所有的bit都设置为1

    NEON中的比较指令,如果结果为true,是把所有的bit都设置为1,而不是设置为1. ushort data1[4] = {129,0,136,255}; uint16x4_t v0 = vld1_ ...

  9. Algorithms - Quicksort - 快速排序算法

    相关概念 快速排序法 Quicksort 也是一个分治思想的算法. 对一个子数组 A[p: r] 进行快速排序的三步分治过程: 1, 分解. 将数组 A[p : r] 被划分为两个子数组(可能为空) ...

  10. 利用Asp.net和Sql Server实现留言板功能

    本教程设及到:使用SQL Server查询分析器创建数据库:SQL查询语句常用的一些属性值:触发器创建和使用:存储过程的创建,ASP使用存储过程. 正文: 一.创建数据库: 创建一个feedback数 ...