UVALive8518 Sum of xor sum
题目链接:https://vjudge.net/problem/UVALive-8518
题目大意:
给定一个长度为 $N$ 的数字序列 $A$,进行 $Q$ 次询问,每次询问 $[L,R]$,需要回答这个区间内的子序列的所有子序列的异或和之和。
$1 \le N,Q \le 100000$
$0 \le A[i] \le 1000000$
知识点: 前缀和
解题思路:
将序列中的每一个数转成二进制(不超过 $20$ 位),逐位考虑。
根据序列中的数字用二进制表示时在该位上为 $1$ 或 $0$,我们可以用 $20$ 个 $01$ 序列来表示序列 $A$。现在只考虑二进制位中的某一位,其他位做类似处理即可:
先预处理出异或前缀和 $preXOR$(很明显,它是个 $01$ 序列),用 $zero[][i]$ 和 $one[][i]$ 表示在 $[1,i]$ 这个区间中的 $preXOR$ 有多少个 $0$ 和 $1$。然后用 $sum[][i]$ 表示 $[1,i]$ 这个区间的答案。易知 $sum[][i] = sum[][i-1] + (所有以 A[i] 为右边界的子序列对答案的贡献)$,即 $sum[j][i] = sum[j][i-1] + 2^j *(preXOR[j][i]:zero[j][i-1]?one[j][i-1])$,因为只有当左边界的左边一位的异或前缀和和右边界的异或前缀和的异或和为 $1$ 时该区间才对答案有贡献。
查询 $[L,R]$ 的时候,对于第 $j$ 位,对答案的贡献为:$sum[j][R]-sum[j][L-1]-zero[j][L-2]*(one[j][R]-one[j][L-1])*2^j -one[j][L-2]*(zero[j][R]-zero[j][L-1])*2^j$.
后半部分其实是减掉那些左边界在 $[1,L-1]$ 而右边界在 $[L,R]$ 的区间对答案的影响,还是一样的道理: 只有当左边界的左边一位的异或前缀和和右边界的异或前缀和的异或和为 $1$ 时该区间才对答案有贡献。
"为什么是l-2,因为左端点要<=l-1,如果是l-1的话就表示从l开始了。"
AC代码:
#include <bits/stdc++.h>
using namespace std; typedef long long LL;
const int MAXN=+;
const int MOD=1e9+; int A[MAXN];
int preXOR[][MAXN];
LL sum[][MAXN],zero[][MAXN],one[][MAXN];
int main(){
int T;
scanf("%d",&T);
while(T--){
int N,Q;
scanf("%d%d",&N,&Q);
for(int i=;i<=N;i++) scanf("%d",&A[i]);
for(int i=;i<;i++){
preXOR[i][]=;
one[i][]=,zero[i][]=;
for(int j=;j<=N;j++){
if(A[j]&(<<i))
preXOR[i][j]=preXOR[i][j-]^;
else
preXOR[i][j]=preXOR[i][j-];
one[i][j]=one[i][j-],zero[i][j]=zero[i][j-];
if(preXOR[i][j]) one[i][j]++;
else zero[i][j]++;
}
}
for(int i=,now=;i<;i++,now<<=){
sum[i][]=;
for(int j=;j<=N;j++){
sum[i][j]=sum[i][j-];
if(preXOR[i][j])
sum[i][j]=(sum[i][j]+zero[i][j-]*now)%MOD;
else
sum[i][j]=(sum[i][j]+one[i][j-]*now)%MOD;
}
}
while(Q--){
int L,R;
scanf("%d%d",&L,&R);
LL ans=;
for(int i=,now=;i<;i++,now<<=){
ans=(ans+sum[i][R]-sum[i][L-])%MOD;
if(L>=)
ans=(ans-zero[i][L-]*(one[i][R]-one[i][L-])*now%MOD
-one[i][L-]*(zero[i][R]-zero[i][L-])*now%MOD)%MOD;
}
if(ans<) ans+=MOD;
printf("%lld\n",ans);
}
}
return ;
}
UVALive8518 Sum of xor sum的更多相关文章
- HDU 4825 Xor Sum(经典01字典树+贪心)
Xor Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others) Total ...
- 字典树-百度之星-Xor Sum
Xor Sum Problem Description Zeus 和 Prometheus 做了一个游戏,Prometheus 给 Zeus 一个集合,集合中包括了N个正整数,随后 Prometheu ...
- HDU 4825 Xor Sum 字典树+位运算
点击打开链接 Xor Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others) ...
- 2014百度之星第三题Xor Sum(字典树+异或运算)
Xor Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others) Total ...
- Sum of xor
Sum of xor jdoj-2160 题目大意:给你一个n,求1^2^...^n. 注释:$n<=10^{18}$. 想法:第一道异或的题.先来介绍一下什么是异或.a^b表示分别将两个数变成 ...
- Xor Sum 01字典树 hdu4825
Xor Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others)Total S ...
- hdu 4825 Xor Sum (01 Trie)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4825 题面: Xor Sum Time Limit: 2000/1000 MS (Java/Others) ...
- HDU--4825 Xor Sum (字典树)
题目链接:HDU--4825 Xor Sum mmp sb字典树因为数组开的不够大一直wa 不是报的 re!!! 找了一下午bug 草 把每个数转化成二进制存字典树里面 然后尽量取与x这个位置上不相同 ...
- hdu 4825 Xor Sum trie树
Xor Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others) Proble ...
随机推荐
- Linux Centos7(Mac)安装Docker
docker 强调隔离性 docker:官网 docker:镜像官网: 镜像官网可以所有应用,选择安装环境:会给出安装命令,例如:docker pull redis 默认拉取最新的版本( ...
- docker-compose简介及安装
一.简介 Compose是用于定义和运行多容器Docker应用程序的工具,是docker的服务编排工具,主要应用于构建基于Docker的复杂应用,compose通过一个配置文件来管理多个docker容 ...
- Tomcat实现Session复制
Tomcat实现Session复制 需要三台虚拟机一台Nginx两台Tomcat 关闭相关的安全机制 systemctl stop firewalldiptables -Fsetenforce 0 首 ...
- Linux系统管理第一二三四章 系统管理 目录和文件管理 安装及管理程序 账号管理
命令 功能 序号 第一章 cd 切换目录 1 stat 查看文件状态信息 2 cp 复制 -f -i -p -r 3 du 统计磁盘的大小 4 find 精细查找文件和目录 5 help 帮助 ...
- springboot docker jenkins 自动化部署并上传镜像
springboot + docker + jenkins自动化部署项目,jenkins.mysql.redis都是docker运行的,并且没有使用虚拟机,就在阿里云服务器(centos7)运行 1. ...
- pod setup命令失败解决方法
最近运行pod setup出现以下问题: remote: Compressing objects: 100% (34/34), done.error: RPC failed; curl 56 SSLR ...
- #Week8 Advice for applying ML & ML System Design
一.Evaluating a Learning Algorithm 训练后测试时如果发现模型表现很差,可以有很多种方法去更改: 用更多的训练样本: 减少/增加特征数目: 尝试多项式特征: 增大/减小正 ...
- Leetcode2 两数相加 Python
给出两个 非空 的链表用来表示两个非负的整数.其中,它们各自的位数是按照 逆序 的方式存储的,并且它们的每个节点只能存储 一位 数字. 如果,我们将这两个数相加起来,则会返回一个新的链表来表示它们的和 ...
- ACM一年记,总结报告(希望自己可以走得很远)
一. 知识点梳理 (一) 先从工具STL说起: 容器学习了:stack,queue,priority_queue,set/multiset,map/multimap,vector. 1.stack: ...
- 对MobileNet网络结构的解读
引言 近几年来,CNN在ImageNet竞赛的表现越来越好.为了追求分类准确度,模型越来越深,复杂度越来越高,如深度残差网络(ResNet)其层数已经多达152层.但是在真实场景中如移动或者嵌入式设备 ...