【Luogu2496】【BZOJ3005】[SDOI2012]体育课
把自己去年在luogu写的一个题解搬过来
1. 题目大意
给定一个长度为 \(n\) 的数列 \(a_1,a_2,a_3,...,a_n\) , 并给出 \(m\) 个操作,操作类型如下:
操作1:查询区间最大值,输出最大值与 \(a_1\) 的差;
操作2:交换两个数的位置;
操作3:选择一段区间 \([l,r]\) 并给定 \(t\) ,将区间中第 \(x\) 个数加上 $x\cdot t $ .
\(n,m \le 10^5\) .
2. 解题报告
本题的正解是分块。
首先我们先考虑操作3,对于两边的元素,我们直接暴力修改然后重构即可。那么我们如何维护整块呢?
维护 \(add[ x ]\) 表示第 \(x\) 块累加的 \(t\) , 那我们要得到单个元素,再维护一个偏移量 \(del[x]\) ,这样块中元素的权值即可表示为 \(w[i]=a[i]+add[x]\times i-del[x]\).
(举个例子,若给块 \([4,6]\) 加上 \(2T, 3T, 4T\) ,那么\(add[x]=T\) ,\(del[x]=2T\),这样 \(w[5]=a[5]+5T-2T=a[5]+3T\) .)
对于操作2,我们直接暴力交换然后重构块即可。
对于操作1,我们考虑在整块被修改后,如何维护块内的最大值。由于每个元素的编号 \(i\) 和权值 \(a_i\) 都是定值且 \(i\) 单增,我们可以将每个元素看成 \((i,a_i)\) ,然后用单调栈维护一个上凸壳。这样随着 \(add\) 的增大,最大元素位置一定向右移动,且元素权值呈单峰。
每个操作维护(询问)的复杂度都为 \(O( n\sqrt{n} )\),再加上本题时间限制宽松,可以轻松通过。
3. 参考程序
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
namespace io {
const int SIZE=(1<<21)+1;
char ibuf[SIZE],*iS,*iT;
char gc()
{
if(iS==iT) iT=(iS=ibuf)+fread(ibuf,1,SIZE,stdin);
if(iS==iT) return EOF;
return *iS++;
}
inline int gi()
{
char c; int x=0,f=1;
for(;c<'0'||c>'9';c=gc())if(c=='-')f=-1;
for(;c>='0'&&c<='9';c=gc())x=(x<<1)+(x<<3)+c-'0';
return x*f;
}
}
using io::gi;
const int N=100005,qN=320;
int n,m,bel[N],b,s[qN][qN],tp[qN],pos[qN];
ll h[N],a[N],add[qN],del[qN];
#define top s[x][tp[x]]
#define dtp s[x][tp[x]-1]
#define Max(x) s[x][pos[x]]
void remove(int x)
{
for(int i=(x-1)*b+1;i<=x*b;i++) a[i]+=add[x]*i-del[x];
add[x]=del[x]=pos[x]=tp[x]=0;
}
void build(int x)
{
memset(s[x],0,sizeof(s[x]));
for(int i=(x-1)*b+1;i<=x*b;i++)
{
while(tp[x]>1&&(a[i]-a[top])*(top-dtp)>=(a[top]-a[dtp])*(i-top))--tp[x];
s[x][++tp[x]]=i;
}
for(pos[x]=1;pos[x]<=tp[x]&&a[s[x][pos[x]+1]]>=a[s[x][pos[x]]];pos[x]++);
}
void update(int x)
{
for(;pos[x]<=tp[x];pos[x]++)
if(a[s[x][pos[x]+1]]+add[x]*s[x][pos[x]+1]<a[s[x][pos[x]]]+add[x]*s[x][pos[x]])
break;
}
int main()
{
n=gi(),m=gi();
b=sqrt(n);
for(int i=1;i<=n;i++) bel[i]=(i-1)/b+1,a[i]=gi();
for(int i=1;i<=bel[n];i++) build(i);
while(m--)
{
int op=gi(),l=gi(),r=gi();
if(op==1)
{
ll k=a[1]+add[1]-del[1];
ll mx=k;
for(;bel[l]==bel[l-1]&&l<=r;l++)
mx=max(mx,a[l]+add[bel[l]]*l-del[bel[l]]);
for(;l+b<=r;l+=b)
mx=max(mx,a[Max(bel[l])]+add[bel[l]]*Max(bel[l])-del[bel[l]]);
for(;l<=r;l++)
mx=max(mx,a[l]+add[bel[l]]*l-del[bel[l]]);
printf("%lld\n",mx-k);
}
if(op==2)
{
remove(bel[l]),remove(bel[r]);
swap(a[l],a[r]);
build(bel[l]); build(bel[r]);
}
if(op==3)
{
int t=gi(),tl=l;
for(;bel[l]==bel[l-1]&&l<=r;l++) a[l]+=(l-tl+1)*t;
remove(bel[l-1]); build(bel[l-1]);
for(;l+b<=r;l+=b) add[bel[l]]+=t,del[bel[l]]+=(tl-1)*t,update(bel[l]);
for(;l<=r;l++) a[l]+=(l-tl+1)*t;
remove(bel[r]); build(bel[r]);
}
}
}
4. 附:维护上凸壳的正确性数学证明
附赠给不能理解维护上凸壳正确性的同学:
假设现在有3个元素 \(x,y,z\) ,设它们的编号分别为 \(h_x, h_y, h_z\),元素大小为 \(a_x,a_y,a_z\) ,权值为\(w_x,w_y,w_z\) , \(h_x<h_y<h_z\) 。设 \(add\) 值为 \(T\), 若存在 \(T\) 使得 \(w_y > w_x\) 且 \(w_y>w_z\),则作差列出不等式:
\(a_x-a_y<(h_y-h_x)T\) , \(a_y-a_z>(h_z-h_y)T\) .
两式整理合并可得 \(\displaystyle \frac{a_z-a_y}{h_z-h_y}<\frac{a_y-a_x}{h_y-h_x}\) .
即:直线 \(y\to z\) 的斜率小于直线 \(x\to y\) 的斜率,故维护上凸壳。同时易发现,随着 \(T\) 的不断增大,最大元素的位置右移,且最大元素左边的权值递增,右边的权值递减(即单峰)。
【Luogu2496】【BZOJ3005】[SDOI2012]体育课的更多相关文章
- P2496 [SDOI2012]体育课
传送门 分块 对每个块维护一个 $add$ 和 $del$ 标记,对于块 $o$ 内某个位置 $i$,它真实的修改量为 $a[i]+add[o]*i-del[o]$ 这样就可以维护一个区间加一个等差数 ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2554 Solved: 1566[Submit][ ...
- 【BZOJ】【2705】【SDOI2012】Longge的问题
欧拉函数/狄利克雷卷积/积性函数 2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1275 Solv ...
- BZOJ 2705: [SDOI2012]Longge的问题 GCD
2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...
- bzoj 2706: [SDOI2012]棋盘覆盖 Dancing Link
2706: [SDOI2012]棋盘覆盖 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 255 Solved: 77[Submit][Status] ...
- bzoj 2705: [SDOI2012]Longge的问题 歐拉函數
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1035 Solved: 669[Submit][S ...
- Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1959 Solved: 1229[Submit][ ...
- BZOJ 2726: [SDOI2012]任务安排( dp + cdq分治 )
考虑每批任务对后面任务都有贡献, dp(i) = min( dp(j) + F(i) * (T(i) - T(j) + S) ) (i < j <= N) F, T均为后缀和. 与j有关 ...
随机推荐
- 几个原生js知识
1.document.documentElement 返回根节点 html. 2.原生方法获取一个对象的某个样式的值. function getStyle(obj, attr) { if(obj.cu ...
- Git基本指令
Git学习笔记 git //检查git是否安装 sudo apt-get install git git config --global user.name "dzq" git c ...
- Caused by: java.lang.NoClassDefFoundError: org/apache/commons/pool2/impl/GenericObjectPoolConfig
Caused by: java.lang.NoClassDefFoundError: org/apache/commons/pool2/impl/GenericObjectPoolConfig at ...
- Mockito 中文文档 ( 2.0.26 beta )
Mockito 中文文档 ( 2.0.26 beta ) 由于缺乏校对,难免有谬误之处,如果发现任何语句不通顺.翻译错误,都可以在github中的项目提出issue.谢谢~ Mockito框架官方地址 ...
- kubernetes从入门到放弃(二)
kubernetes对象之pod 1.pod的认识 Pod直译是豆荚,可以把容器想像成豆荚里的豆子,把一个或多个关系紧密的豆子包在一起就是豆荚(一个Pod).在Kubernetes中我们不会直接操作容 ...
- Struts笔记一
Struts 概念: 是一个MVC框架: Servlet的缺点 1.在web.xml中文件中需要配置很多行代码,维护起来很不方便呢,不利于团队合作. 2.一个servlet的入口只有一个doPost或 ...
- 为spring boot 写的Controller中的rest接口配置swagger
1.pom.xml文件中加入下列依赖: <dependency> <groupId>io.springfox</groupId> <artifactId> ...
- 让eclipse恢复默认布局
参考:https://blog.csdn.net/howlaa/article/details/39178359 Window -> Perspective -> Reset Perspe ...
- 夯实Java基础(二十一)——Java反射机制
1.反射机制概述 Java反射机制是指程序在运行状态中,对于任何一个类,我们都能够知道这个类的所有属性和方法(包括private.protected等).对于任何一个对象,我们都能够对它的属性和方法进 ...
- python爬虫(九) requests库之post请求
1.方法: response=requests.post("https://www.baidu.com/s",data=data) 2.拉勾网职位信息获取 因为拉勾网设置了反爬虫机 ...