把自己去年在luogu写的一个题解搬过来

原题解链接

1. 题目大意

给定一个长度为 \(n\) 的数列 \(a_1,a_2,a_3,...,a_n\) , 并给出 \(m\) 个操作,操作类型如下:

操作1:查询区间最大值,输出最大值与 \(a_1\) 的差;

操作2:交换两个数的位置;

操作3:选择一段区间 \([l,r]\) 并给定 \(t\) ,将区间中第 \(x\) 个数加上 $x\cdot t $ .

\(n,m \le 10^5\) .

2. 解题报告

本题的正解是分块。

首先我们先考虑操作3,对于两边的元素,我们直接暴力修改然后重构即可。那么我们如何维护整块呢?

维护 \(add[ x ]\) 表示第 \(x\) 块累加的 \(t\) , 那我们要得到单个元素,再维护一个偏移量 \(del[x]\) ,这样块中元素的权值即可表示为 \(w[i]=a[i]+add[x]\times i-del[x]\).

(举个例子,若给块 \([4,6]\) 加上 \(2T, 3T, 4T\) ,那么\(add[x]=T\) ,\(del[x]=2T\),这样 \(w[5]=a[5]+5T-2T=a[5]+3T\) .)

对于操作2,我们直接暴力交换然后重构块即可。

对于操作1,我们考虑在整块被修改后,如何维护块内的最大值。由于每个元素的编号 \(i\) 和权值 \(a_i\) 都是定值且 \(i\) 单增,我们可以将每个元素看成 \((i,a_i)\) ,然后用单调栈维护一个上凸壳。这样随着 \(add\) 的增大,最大元素位置一定向右移动,且元素权值呈单峰。

每个操作维护(询问)的复杂度都为 \(O( n\sqrt{n} )\),再加上本题时间限制宽松,可以轻松通过。

3. 参考程序

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
namespace io {
const int SIZE=(1<<21)+1;
char ibuf[SIZE],*iS,*iT;
char gc()
{
if(iS==iT) iT=(iS=ibuf)+fread(ibuf,1,SIZE,stdin);
if(iS==iT) return EOF;
return *iS++;
}
inline int gi()
{
char c; int x=0,f=1;
for(;c<'0'||c>'9';c=gc())if(c=='-')f=-1;
for(;c>='0'&&c<='9';c=gc())x=(x<<1)+(x<<3)+c-'0';
return x*f;
}
}
using io::gi;
const int N=100005,qN=320;
int n,m,bel[N],b,s[qN][qN],tp[qN],pos[qN];
ll h[N],a[N],add[qN],del[qN];
#define top s[x][tp[x]]
#define dtp s[x][tp[x]-1]
#define Max(x) s[x][pos[x]]
void remove(int x)
{
for(int i=(x-1)*b+1;i<=x*b;i++) a[i]+=add[x]*i-del[x];
add[x]=del[x]=pos[x]=tp[x]=0;
}
void build(int x)
{
memset(s[x],0,sizeof(s[x]));
for(int i=(x-1)*b+1;i<=x*b;i++)
{
while(tp[x]>1&&(a[i]-a[top])*(top-dtp)>=(a[top]-a[dtp])*(i-top))--tp[x];
s[x][++tp[x]]=i;
}
for(pos[x]=1;pos[x]<=tp[x]&&a[s[x][pos[x]+1]]>=a[s[x][pos[x]]];pos[x]++);
}
void update(int x)
{
for(;pos[x]<=tp[x];pos[x]++)
if(a[s[x][pos[x]+1]]+add[x]*s[x][pos[x]+1]<a[s[x][pos[x]]]+add[x]*s[x][pos[x]])
break;
}
int main()
{
n=gi(),m=gi();
b=sqrt(n);
for(int i=1;i<=n;i++) bel[i]=(i-1)/b+1,a[i]=gi();
for(int i=1;i<=bel[n];i++) build(i);
while(m--)
{
int op=gi(),l=gi(),r=gi();
if(op==1)
{
ll k=a[1]+add[1]-del[1];
ll mx=k;
for(;bel[l]==bel[l-1]&&l<=r;l++)
mx=max(mx,a[l]+add[bel[l]]*l-del[bel[l]]);
for(;l+b<=r;l+=b)
mx=max(mx,a[Max(bel[l])]+add[bel[l]]*Max(bel[l])-del[bel[l]]);
for(;l<=r;l++)
mx=max(mx,a[l]+add[bel[l]]*l-del[bel[l]]);
printf("%lld\n",mx-k);
}
if(op==2)
{
remove(bel[l]),remove(bel[r]);
swap(a[l],a[r]);
build(bel[l]); build(bel[r]);
}
if(op==3)
{
int t=gi(),tl=l;
for(;bel[l]==bel[l-1]&&l<=r;l++) a[l]+=(l-tl+1)*t;
remove(bel[l-1]); build(bel[l-1]);
for(;l+b<=r;l+=b) add[bel[l]]+=t,del[bel[l]]+=(tl-1)*t,update(bel[l]);
for(;l<=r;l++) a[l]+=(l-tl+1)*t;
remove(bel[r]); build(bel[r]);
}
}
}

4. 附:维护上凸壳的正确性数学证明

附赠给不能理解维护上凸壳正确性的同学:

假设现在有3个元素 \(x,y,z\) ,设它们的编号分别为 \(h_x, h_y, h_z\),元素大小为 \(a_x,a_y,a_z\) ,权值为\(w_x,w_y,w_z\) , \(h_x<h_y<h_z\) 。设 \(add\) 值为 \(T\), 若存在 \(T\) 使得 \(w_y > w_x\) 且 \(w_y>w_z\),则作差列出不等式:

\(a_x-a_y<(h_y-h_x)T\) , \(a_y-a_z>(h_z-h_y)T\) .

两式整理合并可得 \(\displaystyle \frac{a_z-a_y}{h_z-h_y}<\frac{a_y-a_x}{h_y-h_x}\) .

即:直线 \(y\to z\) 的斜率小于直线 \(x\to y\) 的斜率,故维护上凸壳。同时易发现,随着 \(T\) 的不断增大,最大元素的位置右移,且最大元素左边的权值递增,右边的权值递减(即单峰)。

【Luogu2496】【BZOJ3005】[SDOI2012]体育课的更多相关文章

  1. P2496 [SDOI2012]体育课

    传送门 分块 对每个块维护一个 $add$ 和 $del$ 标记,对于块 $o$ 内某个位置 $i$,它真实的修改量为 $a[i]+add[o]*i-del[o]$ 这样就可以维护一个区间加一个等差数 ...

  2. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  3. BZOJ 2705: [SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2554  Solved: 1566[Submit][ ...

  4. 【BZOJ】【2705】【SDOI2012】Longge的问题

    欧拉函数/狄利克雷卷积/积性函数 2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1275  Solv ...

  5. BZOJ 2705: [SDOI2012]Longge的问题 GCD

    2705: [SDOI2012]Longge的问题 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...

  6. bzoj 2706: [SDOI2012]棋盘覆盖 Dancing Link

    2706: [SDOI2012]棋盘覆盖 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 255  Solved: 77[Submit][Status] ...

  7. bzoj 2705: [SDOI2012]Longge的问题 歐拉函數

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1035  Solved: 669[Submit][S ...

  8. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

  9. BZOJ 2726: [SDOI2012]任务安排( dp + cdq分治 )

    考虑每批任务对后面任务都有贡献, dp(i) = min( dp(j) + F(i) * (T(i) - T(j) + S) ) (i < j <= N)  F, T均为后缀和. 与j有关 ...

随机推荐

  1. mysql_pw 指令 数据库创建过程

    ------------------pw_db数据库创建过程各表创建指令-------------------------- create database pw_db; #创建一个数据库use pw ...

  2. 七、SXSSFWorkbook生成大excle,避免内存溢出

    1.SXSSFWorkbook理解: SXSSFWorkbook是用来生成海量excel数据文件,主要原理是借助临时存储空间生成excel,SXSSFWorkbook专门处理大数据,对于大型excel ...

  3. Python基础语法笔记2

    ------------------------------------------------------------------------------- 常量和Pylint的规范 1.常量:常量 ...

  4. ssh pubkey免密登陆远程主机

    二.公钥登录 每次登录远程主机都需要输入密码是很不方便的,如果想要省去这一步骤,可以利用密钥对进行连接,还可以提高安全性. 1.在本机生成密钥对 使用ssh-keygen命令生成密钥对: ssh-ke ...

  5. 解决RStudio(非conda安装)在使用Anaconda中的R环境时,缺失“ libbz2-1.dll ”而不能正常启动问题

    1.问题描述 当非conda安装的RStudio,在调用Anaconda中的R环境时,报如下错误: 2.解决办法 下载同版本的R,对Anaconda中R相应的文件进行替换(图标中标注的部分) R3.5 ...

  6. 《Interest Rate Risk Modeling》阅读笔记——第八章:基于 LIBOR 模型用互换和利率期权进行对冲

    目录 第八章:基于 LIBOR 模型用互换和利率期权进行对冲 思维导图 推导浮息债在重置日(reset date)的价格 第八章:基于 LIBOR 模型用互换和利率期权进行对冲 思维导图 推导浮息债在 ...

  7. python时间序列按频率生成日期的方法

    引用:https://www.zhangshengrong.com/p/281omE7rNw/ 有时候我们的数据是按某个频率收集的,比如每日.每月.每15分钟,那么我们怎么产生对应频率的索引呢?pan ...

  8. git pull 之后怎么找回别覆盖掉的内容

    [半夜吓出冷汗,git这个原理还真得好好学学] 不小心把本地写的东西pull了下,然后,全部覆盖掉了,以为就这样没了. 后面想到有“时光穿梭机”,“历史回滚”,在各大群友的帮助下,终于找回了. git ...

  9. windows系统下hosts文件的改写(为了测试nginx内网的证书代理,需要做域名解析)

    1. win加R     C:\WINDOWS\system32\drivers\etc 2.打开hosts文件  加入一行  IP为客户机要访问的IP地址  域名也是在nginx中定义好的 3.ct ...

  10. 【转载】使用阿里云code和git管理项目

    使用代码云托管和git来管理项目可以使多客户端和多人开发更加高效.通过对比github,bitbucket和国内一些云托管服务发现阿里云在项目空间和传输速度及稳定性上更能满足公司开发的要求.本文将介绍 ...