博客:博客园 | CSDN | blog

写在前面

Inception 家族成员:Inception-V1(GoogLeNet)、BN-Inception、Inception-V2、Inception-V3、Inception-ResNet-V1、Inception-V4、Inception-ResNet-V2。

Inception系列网络结构可以模块化为:

\[Input \rightarrow Stem \rightarrow A \rightarrow ReducitonA \rightarrow B \rightarrow ReductionB \rightarrow C \rightarrow Avg\ Pooling (+ Linear) \rightarrow feature
\]

  • Stem:前处理部分
  • A B C网络主体“三段式”,A B C每段的输入feature size依次折半,channel增加
  • ReductionA B:完成feature size折半操作(降采样)
  • Avg Pooling (+ Linear):后处理部分

Inception系列的演化过程就是上面各环节不断改进(越来越复杂)的过程,其进化方向大致为

  • Stem:大卷积层→多个小卷积层堆叠→multi-branch 小卷积层堆叠
  • A B C:相同multi-branch结构→每阶段不同multi-branch结构→每阶段不同Residual+multi-branch结构,big convolution→ small convolution + BN → factorized convolution
  • ReductionA B:max pooling → 不同multi-branch conv(stride 2)结构
  • 后处理:Avg Pooling + Linear → Avg Pooling

性能进化如下图所示,single model通过center crop 在ImageNet上 Top1 和 Top5 准确率,

具体如下。

Inception-V1 (GoogLeNet)

Inception-V1,更被熟知的名字为GoogLeNet,意向Lenet致敬。

通过增加网络深度和宽度可以提升网络的表征能力。

增加宽度可以简单地通过增加卷积核数量来实现,GoogLeNet在增加卷积核数量的同时,引入了不同尺寸的卷积核,来捕捉不同尺度的特征,形成了multi-branch结构——这是GoogLeNet网络结构的最大特点,如下图所示,然后将不同branch得到的feature map 拼接在一起,为了让feature map的尺寸相同,每个branch均采用SAME padding方式,同时stride为1(包括max pooling)。为了降低计算量,又引入了\(1\times 1\)卷积层来降维,如下图右所示,该multi-branch结构称之为一个Inception Module,在GoogLeNet中采用的是下图右的Inception Module。

直接增加深度会导致浅层出现严重的梯度消失现象,GoogLeNet引入了辅助分类器(Auxiliary Classifier),在浅层和中间层插入,来增强回传时的梯度信号,引导浅层学习到更具区分力的特征。

最终,网络结构如下,主体三段式A B C 即 3x、4x、5x,

GoogLeNet网络结构的特点可以概括为,

  • 同时使用不同尺寸的卷积核,形成multi-branch结构,来捕捉不同尺度的特征
  • 使用\(1 \times 1\)卷积降维,压缩信息,降低计算量
  • 在classifier前使用average pooling

BN-Inception

BN-Inception网络实际是在Batch Normalization论文中顺带提出的,旨在表现BN的强大。

与GoogLeNet的不同之处在于,

  • 在每个激活层前增加BN层
  • 将Inception Module中的\(5 \times 5\) 卷积替换为2个\(3\times 3\) 卷积,如上图所示
  • 在Inception 3a和3b之后增加Inception 3c
  • 部分Inception Module中的Pooling层改为average pooling
  • 取消Inception Module之间衔接的pooling层,而将下采样操作交给Inception 3c和4e,令stride为2

BN-Inception网络结构如下

Inception-V2, V3

Inception V2和V3出自同一篇论文Rethinking the Inception Architecture for Computer Vision

GoogLeNet和BN-Inception网络结构中Inception Module可分为3组,称之为3x、4x和5x(即主体三段式A B C),GoogLeNet和BN-Inception这3组采用相同Inception Module结构,只是堆叠的数量不同。

Inception V2和V3与以往最大的不同之处在于3组分别使用了不同结构的Inception Module,分别如下图从左到右所示,

具体地,

  • 3x使用的Inception Module与BN-Inception相同,即将\(5\times 5\)拆分成2个堆叠的\(3\times 3\) ;
  • 4x使用的Inception Module采用了factorized convolutions ,将2维卷积拆分成2个堆叠的1维卷积,可类比传统计算机视觉中的“行列可分解卷积”,但中间夹了个激活,1维卷积的长度为7;
  • 5x使用的Inception Module,1维卷积不再堆叠而是并列,将结果concat;

除此之外,

  • 3x和4x之间,4x和5x之间,均不存在衔接的池化层,下采样通过Inception Module中的stride实现
  • 取消了浅层的辅助分类器,只保留中层的辅助分类器
  • 最开始的几个卷积层调整为多个堆叠的\(3\times 3\) 卷积

据论文所述,V2的网络结构如下

据论文所述,V3与V2的差异在于,

  • RMSProp Optimizer
  • Label Smoothing训练中使用的label为one hot label与均匀分布的加权,可以看成一种正则
  • Factorized \(7 \times 7\),即将第一个\(7 \times 7\)卷积层变为堆叠的3个\(3 \times 3\)
  • BN-auxiliary,辅助分类器中的全连接层也加入BN

但是,实际发布的Inception V3完全是另外一回事,参见pytorch/inception,有人绘制了V3的网络架构如下——网上少有绘制正确的,下图中亦存在小瑕疵,最后一个下采样Inception Module中\(1\times 1\)的stride为1。

需要注意的是,起下采样作用两个Inception Module并不相同。

有的时候,Inception-V2和BN-Inception是混淆的。从Inception-V3开始,Inception架构变得越来越不像人搞的……

Inception-V4,Inception-ResNet-v1,Inception-ResNet-v2

Inception-V4,Inception-ResNet-v1 和 Inception-ResNet-v2出自同一篇论文Inception-V4, Inception-ResNet and the Impact of Residual Connections on Learning

Inception-V4相对V3的主要变化在于,前处理使用更复杂的multi-branch stem模块,主体三段式与V3相同。

Inception-ResNet-V1与Inception-ResNet-V2,将Inception与ResNet结合,使用Inception结构来拟合残差部分,两者在A B C部分结构相同,只是后者channel数更多,两者的主要差异在前处理部分,后者采用了更复杂的multi-branch stem结构(与V4相同)。相比纯Inception结构,引入ResNet结构极大加快了网络的收敛速度

以上。

参考

Inception系列理解的更多相关文章

  1. 网络结构解读之inception系列四:Inception V3

    网络结构解读之inception系列四:Inception V3   Inception V3根据前面两篇结构的经验和新设计的结构的实验,总结了一套可借鉴的网络结构设计的原则.理解这些原则的背后隐藏的 ...

  2. 网络结构解读之inception系列一:Network in Network

    网络结构解读之inception系列一:Network in Network   网上有很多的网络结构解读,之前也是看他人博客的介绍,但当自己看论文的时候,发现存在很多的细节和动机解读,而这部分能加深 ...

  3. Windows 8实例教程系列 - 理解应用框架

    原文:Windows 8实例教程系列 - 理解应用框架 Windows 操作系统之所以风靡世界,是因为其“易学易用”,从用户的角度出发,让数以万计的非IT人员使用计算机实现娱乐,工作等目的.Windo ...

  4. 『高性能模型』卷积复杂度以及Inception系列

    转载自知乎:卷积神经网络的复杂度分析 之前的Inception学习博客: 『TensorFlow』读书笔记_Inception_V3_上 『TensorFlow』读书笔记_Inception_V3_下 ...

  5. ResNets和Inception的理解

    ResNets和Inception的理解 ResNet解析

  6. 网络结构解读之inception系列五:Inception V4

    网络结构解读之inception系列五:Inception V4 在残差逐渐当道时,google开始研究inception和残差网络的性能差异以及结合的可能性,并且给出了实验结构. 本文思想阐述不多, ...

  7. 网络结构解读之inception系列三:BN-Inception(Inception V2)

    网络结构解读之inception系列三:BN-Inception(Inception V2) BN的出现大大解决了训练收敛问题.作者主要围绕归一化的操作做了一系列优化思路的阐述,值得细看. Batch ...

  8. 网络结构解读之inception系列二:GoogLeNet(Inception V1)

    网络结构解读之inception系列二:GoogLeNet(Inception V1) inception系列的开山之作,有网络结构设计的初期思考. Going deeper with convolu ...

  9. Inception系列之Inception_v1

    目前,神经网络模型为了得到更好的效果,越来越深和越来越宽的模型被提出.然而这样会带来以下几个问题: 1)参数量,计算量越来越大,在有限内存和算力的设备上,其应用也就越难以落地. 2)对于一些数据集较少 ...

随机推荐

  1. 基于Noisy Channel Model和Viterbi算法的词性标注问题

    给定一个英文语料库,里面有很多句子,已经做好了分词,/前面的是词,后面的表示该词的词性并且每句话由句号分隔,如下图所示 对于一个句子S,句子中每个词语\(w_i\)标注了对应的词性\(z_i\).现在 ...

  2. EventEmitter:从命令式 JavaScript class 到声明函数式的华丽转身

    新书终于截稿,今天稍有空闲,为大家奉献一篇关于 JavaScript 语言风格的文章,主角是函数声明式. 灵活的 JavaScript 及其 multiparadigm 相信"函数式&quo ...

  3. Python 【面向对象】

    前言 Python从设计之初就已经是一门面向对象的语言,正因为如此,在Python中创建一个类和对象是很容易的.本章节我们将详细介绍Python的面向对象编程. 如果你以前没有接触过面向对象的编程语言 ...

  4. Aircrack-ng无线审计工具破解无线密码

    Aircrack-ng工具 Aircrack-ng是一个与802.11标准的无线网络分析的安全软件,主要功能有网络探测.数据包嗅探捕获.WEP和WPA/WPA2-PSK破解.Aircrack可以工作在 ...

  5. FastDFS源码学习(一)FastDFS介绍及源码编译安装

    FastDFS是淘宝的余庆主导开发的一个分布式文件系统,采用C语言开发,性能较优.在淘宝网.京东商城.支付宝和某些网盘等系统均有使用,使用场景十分广泛. 下图来源:https://blog.csdn. ...

  6. 对象数组化 Object.values(this.totalValueObj).forEach(value => {

    对象数组化 Object.values(this.totalValueObj).forEach(value => {

  7. json 的基础入门

    JSON是什么: JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.在初始的项目开发中人们更倾向于使用xml来进行数据的传输,但当JSON出现后,开发者更倾 ...

  8. (转)SpringBoot :(has no explicit mapping for /error)

    转载自:https://www.cnblogs.com/panchanggui/p/9945261.html 异常:This application has no explicit mapping f ...

  9. Kafka 详解(转)

    转载自:https://blog.csdn.net/lingbo229/article/details/80761778 Kafka Kafka是最初由Linkedin公司开发,是一个分布式.支持分区 ...

  10. MySQL数据库的创建和操作以及多表查询

    创建数据库: CREATE DATABASE 数据库名称; 查看所有的数据库: SHOW DATABASES; 操作指定数据库: USE 数据库名称; 查看当前所操作的数据库: SELECT DATA ...