本篇为《Python数据可视化实战》第十篇文章,我们一起学习一个交互式可视化Python库——Bokeh。

Bokeh基础

Bokeh是一个专门针对Web浏览器的呈现功能的交互式可视化Python库。这是Bokeh与其它可视化库最核心的区别。

Bokeh绘图步骤

①获取数据

②构建画布figure()

③添加图层,绘图line,circle,square,scatter,multi_line等;参数co

lor,legend

④自定义视觉属性

⑤选择性展示折线数据,建立复选框激活显示,复选框(checkbox)

导入库和数据

import numpy as np
import bokeh
from bokeh.layouts import gridplot
from bokeh.plotting import figure, output_file, show

图表实例

1.散点图

import numpy as np
import bokeh
from bokeh.layouts import gridplot
from bokeh.plotting import figure, output_file, show
# output_file("patch.html") #输出网页形式
p = figure(plot_width=100, plot_height=100)
#数据
N=9
x=np.linspace(-2,2,N)
y=x**2
sizes=np.linspace(10,20,N)
xpts=np.array([-0.09,-0.12,0.0,0.12,0.09])
ypts=np.array([-0.1,0.02,0.1,0.02,-0.1]) p=figure(title="annular_wedge")
p.annular_wedge(x,y,10,20,0.3,4.1,color="#8888ee",inner_radius_units="screen",outer_radius_units="screen")
# Set to output the plot in the notebook
output_notebook()
show(p)

2.多分类的散点图

from bokeh.sampledata.iris import flowers
from bokeh.plotting import figure
from bokeh.io import show, output_notebook
#配色
colormap={'setosa':'red','versicolor':'green','virginica':'blue'}
colors=[colormap[x] for x in flowers['species']]
#画布
p=figure(title='Tris Morphology')
#绘图
#flowers['petal_length']为x,flowers['petal_width']为y,fill_alpha=0.3为填充透明度
p.circle(flowers['petal_length'],flowers['petal_width'],color=colors,fill_alpha=0.3,size=10)
#显示
output_notebook()
show(p)

3.数值大小以散点图大小来表示

import numpy as np
from bokeh.sampledata.iris import flowers
from bokeh.plotting import figure
from bokeh.io import show, output_notebook
x=[1,2,3,4]
y=[5,7,9,12]
sizes=np.array(y)+10 #气泡大小
p=figure(title='bubble chart')
p=figure(plot_width=300,plot_height=300)
p.scatter(x,y,marker="circle",size=sizes,color="navy")
output_notebook()
show(p)

4.折线图line

from bokeh.layouts import column, gridplot
from bokeh.models import BoxSelectTool, Div
from bokeh.plotting import figure
from bokeh.io import show, output_notebook
# 数据
x = [1, 2, 3, 4, 5, 6, 7]
y = [6, 7, 2, 4, 5, 10, 4]
# 画布:坐标轴标签,画布大小
p = figure(title="line example", x_axis_label='x', y_axis_label='y', width=400, height=400)
# 画图:数据、图例、线宽
p.line(x, y, legend="Temp.", line_width=2) # 折线图
# 显示
output_notebook()
show(p)

5.同时展示不同函数,以散点和折线方式

# 数据,同时展示不同函数,以散点和折线方式
x = [0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]
y0 = [i**2 for i in x]
y1 = [10**i for i in x]
y2 = [10**(i**2) for i in x]
# 创建画布
p = figure(
tools="pan,box_zoom,reset,save",
y_axis_type="log", title="log axis example",
x_axis_label='sections', y_axis_label='particles',
width=700, height=350) # y轴类型:log指数或linear线性
# 增加图层,绘图
p.line(x, x, legend="y=x")
p.circle(x, x, legend="y=x", fill_color="white", size=8)
p.line(x, y0, legend="y=x^2", line_width=3)
p.line(x, y1, legend="y=10^x", line_color="red")
p.circle(x, y1, legend="y=10^x", fill_color="red", line_color="red", size=6)
p.line(x, y2, legend="y=10^x^2", line_color="orange", line_dash="4 4")
# 显示
output_notebook()
show(p)

6.不同颜色不同形状表示不同类别的事物

# 数据,同时展示不同函数,以散点和折线方式
x = [0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]
y0 = [i**2 for i in x]
y1 = [10**i for i in x]
y2 = [10**(i**2) for i in x]
# 创建画布
p = figure(
tools="pan,box_zoom,reset,save",
y_axis_type="log", title="log axis example",
x_axis_label='sections', y_axis_label='particles',
width=700, height=350) # y轴类型:log指数或linear线性
# 增加图层,绘图
p.line(x, x, legend="y=x")
p.circle(x, x, legend="y=x", fill_color="white", size=8)
p.line(x, y0, legend="y=x^2", line_width=3)
p.line(x, y1, legend="y=10^x", line_color="red")
p.circle(x, y1, legend="y=10^x", fill_color="red", line_color="red", size=6)
p.line(x, y2, legend="y=10^x^2", line_color="orange", line_dash="4 4")
# 显示
output_notebook()
show(p)

7.不同函数设置创建复选框库选择性显示

x = np.linspace(0, 4 * np.pi, 100)
# 画布
p = figure()
# 折线属性
props = dict(line_width=4, line_alpha=0.7)
# 绘图3条函数序列
l0 = p.line(x, np.sin(x), color=Viridis3[0], legend="Line 0", **props)
l1 = p.line(x, 4 * np.cos(x), color=Viridis3[1], legend="Line 1", **props)
l2 = p.line(x, np.tan(x), color=Viridis3[2], legend="Line 2", **props)
# 复选框激活显示,复选框(checkbox),三个函数序列可选择性展示出来
checkbox = CheckboxGroup(labels=["Line 0", "Line 1", "Line 2"],
active=[0, 1, 2], width=100)
#
checkbox.callback = CustomJS(args=dict(l0=l0, l1=l1, l2=l2, checkbox=checkbox), code="""
l0.visible = 0 in checkbox.active;
l1.visible = 1 in checkbox.active;
l2.visible = 2 in checkbox.active;
""")
# 添加图层
layout = row(checkbox, p)
output_notebook()
# 显示
show(layout)

8.收盘价的时序图走势和散点图

import numpy as np
from bokeh.plotting import figure
from bokeh.io import show, output_notebook
from bokeh.layouts import row #row()的作用是将多个图像以行的方式放到同一张图中
from bokeh.palettes import Viridis3
from bokeh.models import CheckboxGroup, CustomJS #CheckboxGroup 创建复选框库
# 数据
aapl = np.array(AAPL['adj_close'])
aapl_dates = np.array(AAPL['date'], dtype=np.datetime64)
window_size = 30
window = np.ones(window_size)/float(window_size)
aapl_avg = np.convolve(aapl, window, 'same')
# 画布
p = figure(width=800, height=350, x_axis_type="datetime")
# 图层
p.circle(aapl_dates, aapl, size=4, color='darkgrey', alpha=0.2, legend='close') #散点图
p.line(aapl_dates, aapl_avg, color='red', legend='avg') #折线时序图
# 自定义视觉属性
p.title.text = "AAPL One-Month Average"
p.legend.location = "top_left"
p.grid.grid_line_alpha=0
p.xaxis.axis_label = 'Date'
p.yaxis.axis_label = 'Price'
p.ygrid.band_fill_color="gray"
p.ygrid.band_fill_alpha = 0.1
p.legend.click_policy="hide" # 点击图例显示隐藏数据
# 显示结果
output_notebook()
show(p)



一个交互式可视化Python库——Bokeh的更多相关文章

  1. 一文总结数据科学家常用的Python库(上)

    概述 这篇文章中,我们挑选了24个用于数据科学的Python库. 这些库有着不同的数据科学功能,例如数据收集,数据清理,数据探索,建模等,接下来我们会分类介绍. 您觉得我们还应该包含哪些Python库 ...

  2. 总结数据科学家常用的Python库

    概述 这篇文章中,我们挑选了24个用于数据科学的Python库. 这些库有着不同的数据科学功能,例如数据收集,数据清理,数据探索,建模等,接下来我们会分类介绍. 您觉得我们还应该包含哪些Python库 ...

  3. 数据处理一条龙!这15个Python库不可不知

    如果你是一名数据科学家或数据分析师,或者只是对这一行业感兴趣,那下文中这些广受欢迎且非常实用的Python库你一定得知道. 从数据收集.清理转化,到数据可视化.图像识别和网页相关,这15个Python ...

  4. [资料搜集狂]D3.js数据可视化开发库

    偶然看到一个强大的D3.js,存档之. D3.js 是近年来十分流行的一个数据可视化开发库. 采用BSD协议 源码:https://github.com/mbostock/d3 官网:http://d ...

  5. python库-Arrow处理时间

    Arrow是一个处理时间的python库,能一键转换dates/times/timestamps等时间格式而不需要大量导致各种时间模块和格式转换函数,十分快捷方便 使用Arrow需要两步转换操作: 1 ...

  6. Bokeh 0.9.0dev 发布,交互式可视化库

    快速使用Romanysoft LAB的技术实现 HTML 开发Mac OS App,并销售到苹果应用商店中.   <HTML开发Mac OS App 视频教程> 土豆网同步更新:http: ...

  7. 基于Python的交互式可视化工具 [转]

    前几天发现一个可视化工具Dash,当看到它的交互式效果后突然就觉得眼前一亮.早就想写出来分享给大家,今天利用睡前一点时间发出来,希望能给有需要的朋友带来一点帮助或者多一个参考. Dash介绍 在Pyt ...

  8. sopt:一个简单的python最优化库

    引言     最近有些朋友总来问我有关遗传算法的东西,我是在大学搞数学建模的时候接触过一些最优化和进化算法方面的东西,以前也写过几篇博客记录过,比如遗传算法的C语言实现(一):以非线性函数求极值为例和 ...

  9. #华为云·寻找黑马程序员# 如何实现一个优雅的Python的Json序列化库

    在Python的世界里,将一个对象以json格式进行序列化或反序列化一直是一个问题.Python标准库里面提供了json序列化的工具,我们可以简单的用json.dumps来将一个对象序列化.但是这种序 ...

随机推荐

  1. optogenetics|

    Bird &optogenetics&day&night 光遗传学(optogenetics)——结合遗传工程与光来操作个别神经细胞的活性,发现脑部如何产生γ波(gamma o ...

  2. python 3新式类的多继承

    因为我用的是python3,所以所用到的类都是新式类,这里我说的都是新式类,python2类的继承复杂一些,主要有新式类和老式类.python3类(新式类)的继承是是广度优先(BFS),实例如下: c ...

  3. SpringMVC学习笔记六:类型转换器及类型转换异常处理

    SpringMVC内部有类型转换器,当从Request中获取参数后,放入Controller中时,会根据Controller中指定的类型进行自动转换,当指的类型SpringMVC不能自动转换时,就需要 ...

  4. Docker私有仓库管理

    docker load -i registry.tar.gz docker run -d -p 5000:5000 --restart=always --name registry -v /opt/m ...

  5. idea运行时默认显示的index.jsp修改方法

    在web.xml中加入以下代码,然后重启服务器就可以了. <welcome-file-list> <welcome-file>这儿写你要显示的页面名称</welcome- ...

  6. [开源福利] Arithmetic Generator

    Arithmetic Generator Built with ❤︎ by Simon Ma ✨ A powerful arithmetic generator

  7. mysql JOIN查询

    查询左表a,并且关联a表在b表中的关联,如果关联不存在也可以查出左表的,注:只查询a的部分列,和b的部分列 SELECT a.id, b.id as my FROM a LEFT JOIN b ON ...

  8. css布局中的各种FC(BFC、IFC、GFC、FFC)

    什么是FC?FC(Formatting Context)格式化上下文,其实指的是一个渲染区域,拥有一套渲染规则,它决定了其子元素如何定位,以及与其他元素之间的关系和相互作用. 什么是BFC? BFC( ...

  9. 用mpvue写个玩意儿玩玩

    下周公司要搞黑客马拉松了,组里可能会做个小程序.然后看到了mpvue感觉还不错,于是就打算试试水.用vue写小程序听上去美滋滋.那么先开始吧! 全局安装 vue-cli $ npm install - ...

  10. Django中的session的使用

    一.Session 的概念 cookie 是在浏览器端保存键值对数据,而 session 是在服务器端保存键值对数据 session 的使用依赖 cookie:在使用 Session 后,会在 Coo ...