堆(c++)
5分钟速成堆
FBI⚠WARNING
本文要素过多
吐槽
堆是我迄今为止学过最简单的数据结构
我还没学会最小生成树、最短路时就学会了
堆实用高效,值得推荐
(如果你看完了这篇文章还不会,你可以直接Copy,慢慢理解)
了解什么是堆
堆(Heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵完全二叉树的数组对象。————摘自(没人看得懂的)度娘
堆的特性?
堆中某个节点的值总是不大于(大根堆)或不小于(小根堆)其父节点的值;
堆总是一棵完全二叉树。
堆的作用?
堆支持查找最值的操作。
堆的实现
堆有5种操作,上移、下移、插入、删除、建堆。
(本文采用迭代法,如果你难以理解,可以使用递归法)
上移
若比父节点大/小,则与父节点交换(上移)
//我们以小根堆为例:
void up(int x){//把x这个位置上移
while (x>&&c[x]<c[x/]){
swap(x,x/);//交换
x/=;//节点变化
}
return;
}
下移
若比子节点大/小,则与子节点交换(下移)
//我们以小根堆为例:
void down(int x){//把x这个位置下移
while (x*2<=cnt&&c[x]>c[x/2]||x*2+1<=cnt&&c[x]>=c[x*2+1]){
int y=x*2;
if (y+1<=cnt&&c[y]>c[y+1]) y++;//尽量选小的换
swap(x,y);//交换
x=y;//节点变化
}
return;
}
插入
元素会有变化,所以要用到插入
设cnt为堆元素总数,c为堆,则在c[++cnt]插入
但是此时堆不一定保持特性
所以进行上移
维护堆
void down(int x){//插入x
c[++cnt]=x;
up(cnt);
return;
}
删除
当我们要删除最值
就将堆顶弹出(显而易见)
但是特性不一定能保持
所以我们将堆底放到堆顶
再下移
void del(int x){//删除x
c[1]=c[cnt--];
down(1);
return;
}
建堆
无脑暴力:不断插入
O(NlogN)
for (int i=1;i<=n;i++){
scanf("%d",&x);
insert(x);
}
优化:处理一半,自然OK
O(N)
for (int i=1;i<=n;i++){
scanf("%d",&c[i]);
}
for (int i=n/2;i>0;i--)
down(i);
重中之重(c++福利)
c++有优先队列(堆)
可以直接调用函数
大家可以自学
例题
排序(经典堆排序)
code如下(pascal,code来自jzoj.net,a是堆,num是堆元素总数)
var
num,i,j,k,m,n,x,y:longint;
a:array[0..200001]of longint;
procedure up(x:longint);
var
i,sw:longint;
begin
while(a[x div 2]>a[x])and(x>1)do
begin
sw:=a[x div 2];
a[x div 2]:=a[x];
a[x]:=sw;
x:=x div 2;
end;
end;
procedure down(x:longint);
var
i,t:longint;
begin
while(2*x<=num)and(a[x]>a[2*x])or(2*x+1<=num)and(a[x]>=a[2*x+1]) do
begin
i:=2*x;
if(i+1<=num)and(a[i+1]<a[i]) then inc(i);
t:=a[x];
a[x]:=a[i];
a[i]:=t;
x:=i;
end;
end; begin
read(m);
for i:=1 to m do
begin
inc(num);read(a[num]);up(num);
end;
for i:=1 to m do
begin
writeln(a[1],' ');
a[1]:=a[num]; a[num]:=0;
dec(num);
down(1);
end;
end.
思路:首先建一个堆,然后每次取出堆顶并输出,然后删除堆顶
O(NlogN)
合并果子
一堆果子,有权值,每次合并,则权值为合并果子权值和,耗费体力相同
问体力消耗最小值
本题用贪心,每次将最小的两堆果子合并
用堆实现
弹出堆顶,维护之
再取堆顶,堆顶等于两次权值和
并且再次维护
经典贪心
code(code来自jzoj.net,heap是堆,heap_size是堆元素总数)
#include <cstdio>
using namespace std;
int heap_size,n;
int heap[30001];
void swap(int &a,int &b){int t=a;a=b;b=t;}
void put(int d){
int now,next;
heap[++heap_size]=d;
now=heap_size;
while(now>1){
next=now>>1;
if(heap[now]>=heap[next]) return;
swap(heap[now],heap[next]);
now=next;
}
}
int get(){
int now,next,res;
res=heap[1];
heap[1]=heap[heap_size--];
now=1;
while(now*2<=heap_size){
next=now*2;
if(next<heap_size&&heap[next+1]<heap[next]) next++;
if(heap[now]<=heap[next]) return res;
swap(heap[now],heap[next]);
now=next;
}
return res;
}
void work(){
int i,x,y,ans=0;
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%d",&x);
put(x);
}
for(i=1;i<n;i++){
x=get();
y=get();
ans+=x+y;
put(x+y);
}
printf("%d",ans);
}
int main(){
work();
return 0;
}
顺手点个赞
--reference Java Heap Memory vs Stack Memory Difference 在数据结构中,堆和栈可以说是两种最基础的数据结构,而Java中的栈内存空间和堆内存空间有 ... 堆(heap),是一种特殊的数据结构.之所以特殊,因为堆的形象化是一个棵完全二叉树,并且满足任意节点始终不大于(或者不小于)左右子节点(有别于二叉搜索树Binary Search Tree).其中,前 ... 在讲解PriorityQueue之前,需要先熟悉一个有序数据结构:最小堆. 最小堆是一种经过排序的完全二叉树,其中任一非终端节点数值均不大于其左孩子和右孩子节点的值. 可以得出结论,如果一棵二叉树满足 ... 45节介绍了堆的概念和算法,上节介绍了Java中堆的实现类PriorityQueue,PriorityQueue除了用作优先级队列,还可以用来解决一些别的问题,45节提到了如下两个应用: 求前K个最大 ... 俗话说,自己写的代码,6个月后也是别人的代码……复习!复习!复习!涉及到的知识点总结如下: 堆栈是栈 JVM栈和本地方法栈划分 Java中的堆,栈和c/c++中的堆,栈 数据结构层面的堆,栈 os层面 ... #!/usr/bin/env python # -*- coding:utf-8 -*- ''' Author: Minion-Xu ''' #异常类 class HeapPriQueueError( ... #!/usr/bin/env python # -*- coding:utf-8 -*- ''' Author: Minion-Xu 小堆序实现从大到小排序,大堆序实现从小到大排序 重点的地方:小堆序 ... Java中堆内存和栈内存详解 Java把内存分成两种,一种叫做栈内存,一种叫做堆内存 在函数中定义的一些基本类型的变量和对象的引用变量都是在函数的栈内存中分配.当在一段代码块中定义一个变量时,ja ... 3110 二叉堆练习3 时间限制: 3 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 给定N(N≤500,000)和N个整 ... codevs 2879 堆的判断 http://codevs.cn/problem/2879/ 题目描述 Description 堆是一种常用的数据结构.二叉堆是一个特殊的二叉树,他的父亲节点比两个儿 ... //允许将空字符串或其他字符串添加到原始字符串的开头或结尾for(let i = 1; i < 32; i++) { if(i < 10) { console.log(`0{i}`) }e ... <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ... 所有的数据输出到屏幕上,实际上被隐式的转换成了字符型,首先了解下各种数据类型的字符串表示 <?php echo 300,'<hr>'; echo true,'<hr>'; ... 前言 上一节中说明了springboot是如何做到自动发现配置的,那么本节看下spring如何创建上下文并解析这些配置,加载我们注册到容器管理中的类.上节已经成功的创建了SpringApplicati ... 实现目的 在进行性能测试时,某些请求中的参数值并不允许被重复使用,比如账号的创建.开通授权等服务,这时就需要在jmeter中构造一些自增长型的变量,供后续请求使用,以解决参数值重复的问题. 脚本实现 ... 在芯片制造过程中的工艺偏差由global variation 和local variation 两部分组成. 在集成电路设计实现中,global variation 用PVT 跟 RC-corner ... SP8284 WEIGHT - Weighted Sum 题意描述 给出长度为n(n<=1e6)的序列A, A中元素可能为正数,可为负数或0,.让你构造一个长度为n的序列W,给这些整数A赋权,使 ... 该系列总览: Hadoop3.1.1架构体系——设计原理阐述与Client源码图文详解 : 总览 在上一章(Hadoop3.1.1源码Client详解 : 写入准备-RPC调用与流的建立) 我们提到, ... 1.检查可以安装的VSFTP版本 yum search vsftp 2.开始安装VSFTP yum install -y vsftpd 3.配置说明 cd /etc/vsftpd vsftpd.con ... 进入控制台录入 sqlplus /nolog; connect / as sysdba alter user sys identified by ; alter user system ident ...堆(c++)的更多相关文章
随机推荐