629. K个逆序对数组

给出两个整数 n 和 k,找出所有包含从 1 到 n 的数字,且恰好拥有 k 个逆序对的不同的数组的个数。

逆序对的定义如下:对于数组的第i个和第 j个元素,如果满i < j且 a[i] > a[j],则其为一个逆序对;否则不是。

由于答案可能很大,只需要返回 答案 mod 109 + 7 的值。

示例 1:

输入: n = 3, k = 0

输出: 1

解释:

只有数组 [1,2,3] 包含了从1到3的整数并且正好拥有 0 个逆序对。

示例 2:

输入: n = 3, k = 1

输出: 2

解释:

数组 [1,3,2] 和 [2,1,3] 都有 1 个逆序对。

说明:

n 的范围是 [1, 1000] 并且 k 的范围是 [0, 1000]。

假如当前的4个数字的排列方式为:xxxx
再往其中添加一个数字5有如下几种添加方式: xxxx5
多出0个逆序对,因此有:
f1(5,k)=f(4,k)
xxx5x
多出1个逆序对,因此有:
f2(5,k+1)=f(4,k)=> f2(5,k)=f(4,k-1)
xx5xx
多出1个逆序对,因此有:
f3(5,k+2)=f(4,k)=> f3(5,k)=f(4,k-2)
x5xxx
多出1个逆序对,因此有:
f4(5,k+3)=f(4,k)=> f4(5,k)=f(4,k-3)
5xxxx
多出1个逆序对,因此有:
f5(5,k+4)=f(4,k)=> f5(5,k)=f(4,k-4)
=>
f(5,k) = f1 + f2 + f3 + ... + f5
=>
f(5,k) = f(4,k) + f(4,k-1) + f(4,k-2) + f(4,k-3) + f(4,k-5+1)
=>
f(n,k) = f(n-1,k)+f(n-1,k-1) + f(n-1,k-2) + f(n-1,k-3) + ... + f(n-1,k-n+1)
=>
f(n,k+1) = f(n-1,k+1) + f(n-1,k-1) + f(n-1,k-2) + ... + f(n-1,k-n+2)
=>
f(n,k+1) - f(n,k) = f(n-1,k+1) - f(n-1,k-n+1)
=>
f(n,k+1) = f(n,k) + f(n-1,k+1) - f(n-1,k-n+1)
=>
f(n,k) = f(n,k-1) + f(n-1,k) - f(n-1,k-n) 两个递推公式: f(n,k) = f(n-1,k)+f(n-1,k-1) + f(n-1,k-2) + f(n-1,k-3) + ... + f(n-1,k-n+1)
f(n,k) = f(n,k-1) + f(n-1,k) - f(n-1,k-n)
class Solution {

      public int kInversePairs(int n, int k) {
long[][] dp = new long[n + 1][k + 1];
if(k > n*(n - 1) / 2 || k < 0)
return 0;
if(k == 0 || k == n *(n - 1) / 2)
return 1; int mod = 1000000007;
dp[2][0] = 1;
dp[2][1] = 1;
for(int i = 3 ; i <= n ; i ++){
dp[i][0] = 1;
for(int j = 1 ; j <= Math.min(k, n * (n - 1) / 2); j ++){
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
if(j >= i)
dp[i][j] -= dp[i - 1][j - i];
dp[i][j] = (dp[i][j] + mod) % mod; //处理dp[i][j]为负数的情况
}
}
return (int)dp[n][k];
}
}

Java实现 LeetCode 629 K个逆序对数组(动态规划+数学)的更多相关文章

  1. Leetcode 629.K个逆序对数组

    K个逆序对数组 给出两个整数 n 和 k,找出所有包含从 1 到 n 的数字,且恰好拥有 k 个逆序对的不同的数组的个数. 逆序对的定义如下:对于数组的第i个和第 j个元素,如果满i < j且  ...

  2. [Swift]LeetCode629. K个逆序对数组 | K Inverse Pairs Array

    Given two integers n and k, find how many different arrays consist of numbers from 1 to n such that ...

  3. 【BZOJ1831】[AHOI2008]逆序对(动态规划)

    [BZOJ1831][AHOI2008]逆序对(动态规划) 题面 BZOJ 洛谷 题解 显然填入的数拎出来是不降的. 那么就可以直接大力\(dp\). 设\(f[i][j]\)表示当前填到了\(i\) ...

  4. XJTUOJ wmq的队伍(树状数组求 K 元逆序对)

    题目链接:http://oj.xjtuacm.com/problem/14/[分析]二元的逆序对应该都会求,可以用树状数组.这个题要求K元,我们可以看成二元的.我们先从后往前求二元逆序对数, 然后对于 ...

  5. 剑指offer-数组中的逆序对-数组-python

    题目描述 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数P.并将P对1000000007取模的结果输出. 即输出P%1000 ...

  6. Java实现 LeetCode 25 K个一组翻转链表

    25. K 个一组翻转链表 给你一个链表,每 k 个节点一组进行翻转,请你返回翻转后的链表. k 是一个正整数,它的值小于或等于链表的长度. 如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持 ...

  7. Java实现 LeetCode 787 K 站中转内最便宜的航班(两种DP)

    787. K 站中转内最便宜的航班 有 n 个城市通过 m 个航班连接.每个航班都从城市 u 开始,以价格 w 抵达 v. 现在给定所有的城市和航班,以及出发城市 src 和目的地 dst,你的任务是 ...

  8. Java实现 LeetCode 4 寻找两个有序数组的中位数

    寻找两个有序数组的中位数 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 n ...

  9. Java实现 LeetCode 1162 地图分析(可以暴力或者动态规划的BFS)

    1162. 地图分析 你现在手里有一份大小为 N x N 的『地图』(网格) grid,上面的每个『区域』(单元格)都用 0 和 1 标记好了.其中 0 代表海洋,1 代表陆地,你知道距离陆地区域最远 ...

随机推荐

  1. ubuntu安装java方法

    详情请点链接:https://www.digitalocean.com/community/tutorials/how-to-install-java-with-apt-get-on-ubuntu-1 ...

  2. JDBC02 加载JDBC驱动 建立连接

    JDBC(Java Database Connection)为Java开发者使用数据库提供了统一的编程接口 sun公司由于不知道各个主流商用数据库的程序代码,因此无法自己写代码连接各个数据库,因此su ...

  3. java ->网络通信协议(UDP协议、TCP协议)

    网络通信协议 通过计算机网络可以使多台计算机实现连接,位于同一个网络中的计算机在进行连接和通信时需要遵守一定的规则,这就好比在道路中行驶的汽车一定要遵守交通规则一样.在计算机网络中,这些连接和通信的规 ...

  4. Python基础语法day_04——操作列表

    day_04 遍历整个列表 我们创建列表时,需要输出整个列表,但是通常列表会很长,包含很多元素,当列表长度发生变化是,都必须修改代码.通过for循环,我们可以很轻易地输出整个列表. #遍历整个列表 创 ...

  5. 6、保持会话(save)

    前言 为什么要保存会话呢?举个很简单的场景,你在上海测试某个功能接口的时候,发现了一个BUG,而开发这个接口的开发人员是北京的一家合作公司.你这时候给对方开发提bug, 如何显得专业一点,能让对方心服 ...

  6. 计算机组成及系统结构-第九章 输入输出(I/O)设备

    输入输出(I/O)设备 一.外部设备概述 二.输入设备 1.键盘 2.光笔.图形板和画笔(或游动标)输入 3.鼠标.跟踪球和操作杆输入 4.触摸屏 5.图像输入设备 6.条形码 7.光学字符识别(OC ...

  7. 力扣题解-560. 和为K的子数组

    题目描述 给定一个整数数组和一个整数 k,你需要找到该数组中和为 k 的连续的子数组的个数. 示例 1 : 输入:nums = [1,1,1], k = 2 输出: 2 , [1,1] 与 [1,1] ...

  8. 敏捷为什么会失败之「PA-SA-WAKA-DA」理论

    在日常生活中,有种有趣的现象:我们更津津乐道于美好的故事,比如提到好莱坞,我们关注的只是大牌明星,却忽略了他们成名其背后的艰辛.对于那些成功的敏捷项目,也是如此.在我们见证成功的同时,却忘记了项目团队 ...

  9. Django之ORM配置与单表操作

    ORM数据库操作流程: 1.    配置数据库(项目同名包中settings.py和__init__.py) 2.    定义类(app包中models.py),执行建表命令(Tools---> ...

  10. Django模板之自定义过滤器/标签/组件

    自定义步骤: 1.     在settings中的INSTALLED_APPS配置当前app,不然django无法找到自定义的simple_tag. 2.     在app应用中创建templatet ...