Java实现 LeetCode 629 K个逆序对数组(动态规划+数学)
629. K个逆序对数组
给出两个整数 n 和 k,找出所有包含从 1 到 n 的数字,且恰好拥有 k 个逆序对的不同的数组的个数。
逆序对的定义如下:对于数组的第i个和第 j个元素,如果满i < j且 a[i] > a[j],则其为一个逆序对;否则不是。
由于答案可能很大,只需要返回 答案 mod 109 + 7 的值。
示例 1:
输入: n = 3, k = 0
输出: 1
解释:
只有数组 [1,2,3] 包含了从1到3的整数并且正好拥有 0 个逆序对。
示例 2:
输入: n = 3, k = 1
输出: 2
解释:
数组 [1,3,2] 和 [2,1,3] 都有 1 个逆序对。
说明:
n 的范围是 [1, 1000] 并且 k 的范围是 [0, 1000]。
假如当前的4个数字的排列方式为:xxxx
再往其中添加一个数字5有如下几种添加方式:
xxxx5
多出0个逆序对,因此有:
f1(5,k)=f(4,k)
xxx5x
多出1个逆序对,因此有:
f2(5,k+1)=f(4,k)=> f2(5,k)=f(4,k-1)
xx5xx
多出1个逆序对,因此有:
f3(5,k+2)=f(4,k)=> f3(5,k)=f(4,k-2)
x5xxx
多出1个逆序对,因此有:
f4(5,k+3)=f(4,k)=> f4(5,k)=f(4,k-3)
5xxxx
多出1个逆序对,因此有:
f5(5,k+4)=f(4,k)=> f5(5,k)=f(4,k-4)
=>
f(5,k) = f1 + f2 + f3 + ... + f5
=>
f(5,k) = f(4,k) + f(4,k-1) + f(4,k-2) + f(4,k-3) + f(4,k-5+1)
=>
f(n,k) = f(n-1,k)+f(n-1,k-1) + f(n-1,k-2) + f(n-1,k-3) + ... + f(n-1,k-n+1)
=>
f(n,k+1) = f(n-1,k+1) + f(n-1,k-1) + f(n-1,k-2) + ... + f(n-1,k-n+2)
=>
f(n,k+1) - f(n,k) = f(n-1,k+1) - f(n-1,k-n+1)
=>
f(n,k+1) = f(n,k) + f(n-1,k+1) - f(n-1,k-n+1)
=>
f(n,k) = f(n,k-1) + f(n-1,k) - f(n-1,k-n)
两个递推公式:
f(n,k) = f(n-1,k)+f(n-1,k-1) + f(n-1,k-2) + f(n-1,k-3) + ... + f(n-1,k-n+1)
f(n,k) = f(n,k-1) + f(n-1,k) - f(n-1,k-n)
class Solution {
public int kInversePairs(int n, int k) {
long[][] dp = new long[n + 1][k + 1];
if(k > n*(n - 1) / 2 || k < 0)
return 0;
if(k == 0 || k == n *(n - 1) / 2)
return 1;
int mod = 1000000007;
dp[2][0] = 1;
dp[2][1] = 1;
for(int i = 3 ; i <= n ; i ++){
dp[i][0] = 1;
for(int j = 1 ; j <= Math.min(k, n * (n - 1) / 2); j ++){
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
if(j >= i)
dp[i][j] -= dp[i - 1][j - i];
dp[i][j] = (dp[i][j] + mod) % mod; //处理dp[i][j]为负数的情况
}
}
return (int)dp[n][k];
}
}
Java实现 LeetCode 629 K个逆序对数组(动态规划+数学)的更多相关文章
- Leetcode 629.K个逆序对数组
K个逆序对数组 给出两个整数 n 和 k,找出所有包含从 1 到 n 的数字,且恰好拥有 k 个逆序对的不同的数组的个数. 逆序对的定义如下:对于数组的第i个和第 j个元素,如果满i < j且 ...
- [Swift]LeetCode629. K个逆序对数组 | K Inverse Pairs Array
Given two integers n and k, find how many different arrays consist of numbers from 1 to n such that ...
- 【BZOJ1831】[AHOI2008]逆序对(动态规划)
[BZOJ1831][AHOI2008]逆序对(动态规划) 题面 BZOJ 洛谷 题解 显然填入的数拎出来是不降的. 那么就可以直接大力\(dp\). 设\(f[i][j]\)表示当前填到了\(i\) ...
- XJTUOJ wmq的队伍(树状数组求 K 元逆序对)
题目链接:http://oj.xjtuacm.com/problem/14/[分析]二元的逆序对应该都会求,可以用树状数组.这个题要求K元,我们可以看成二元的.我们先从后往前求二元逆序对数, 然后对于 ...
- 剑指offer-数组中的逆序对-数组-python
题目描述 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数P.并将P对1000000007取模的结果输出. 即输出P%1000 ...
- Java实现 LeetCode 25 K个一组翻转链表
25. K 个一组翻转链表 给你一个链表,每 k 个节点一组进行翻转,请你返回翻转后的链表. k 是一个正整数,它的值小于或等于链表的长度. 如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持 ...
- Java实现 LeetCode 787 K 站中转内最便宜的航班(两种DP)
787. K 站中转内最便宜的航班 有 n 个城市通过 m 个航班连接.每个航班都从城市 u 开始,以价格 w 抵达 v. 现在给定所有的城市和航班,以及出发城市 src 和目的地 dst,你的任务是 ...
- Java实现 LeetCode 4 寻找两个有序数组的中位数
寻找两个有序数组的中位数 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 n ...
- Java实现 LeetCode 1162 地图分析(可以暴力或者动态规划的BFS)
1162. 地图分析 你现在手里有一份大小为 N x N 的『地图』(网格) grid,上面的每个『区域』(单元格)都用 0 和 1 标记好了.其中 0 代表海洋,1 代表陆地,你知道距离陆地区域最远 ...
随机推荐
- Day_09【常用API】扩展案例3_删除源字符串中的指定字符,并计算指定字符出现的次数
分析以下需求,并用代码实现 1.键盘录入一个源字符串由字符串变量scrStr接收 2.键盘录入一个要删除的字符串由字符串变量delStr接收 3.要求 删除该字scrStr符串中的所有delStr字符 ...
- 关于Fragment的点击切换数据滞留问题
场景再现:当我使用tabLayout + Fragment 切换不同的fragment时,出现了数据重复显示的问题: 思考逻辑: - 每次切换fragment都会重新获取数据,但是list集合是全局的 ...
- Coda docs
a doc,反过来就是coda,有点冷. 对我而言,在线文档的好处在于在线数据库.存放代码等. Quip能高亮代码,但有时墙内不香,害得我用APP查看记录.Slite能高亮代码,但表格功能弱.号称al ...
- iOS中的几种锁的总结,三种开启多线程的方式(GCD、NSOperation、NSThread)
学习内容 欢迎关注我的iOS学习总结--每天学一点iOS:https://github.com/practiceqian/one-day-one-iOS-summary OC中的几种锁 为什么要引入锁 ...
- json 格式要求
json 格式中, 字符串类型需要使用双引号,不能为单引号
- React的第二种使用方法----脚手架方式
一.React的第二种使用方法-----脚手架 1.前提:Node.js >8.10 2.下载全局脚手架工具 npm i -g create-react-app 3.运行全局脚手架工具,创 ...
- python3.x 基础三:装饰器
装饰器:本质是函数,用于装饰其他函数,在不改变其他函数的调用和代码的前提下,增加新功能 原则: 1.不能修改被装饰函数的源代码 2.不能修改被装饰函数的调用方式 3.装饰函数对于被装饰函数透明 参考如 ...
- IDEA启动springboot项目找不到application.yml配置文件
idea启动项目时读取不到application-pro.yml文件,但是配置文件都在resource目录下: 解决:target/classes 目录是IDEA的classpath目录,项目编译后配 ...
- 设置TextField的响应View和toolBar
inputView 设置用于展示的响应View 类似于键盘的展示方式 inputAccessoryView 用于设置响应View上面的ToolBar 使用方式: inputView设置为响应View ...
- 10个典型的JavaScript面试题
问题1:作用域 考虑如下代码: JavaScript 1 2 3 4 5 6 7 (function() { var a = b = 5; })(); console.log(b) ...