Description

你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 n 编号,要将他们拆分 成若干特别行动队调入战场。出于默契的考虑,同一支特别行动队中队员的编号 应该连续,即为形如 (i, i + 1, ..., i + k)(i,i+1,...,i+k) 的序列。 编号为 i 的士兵的初始战斗力为 xi ,一支特别行动队的初始战斗力 x 为队内 士兵初始战斗力之和,即 x = x_i + x_{i+1} + ... + x_{i+k}x=xi​+xi+1​+...+xi+k​ 。

通过长期的观察,你总结出一支特别行动队的初始战斗力 x 将按如下经验公 式修正为 x':x'= ax^2+bx+cx′:x′=ax2+bx+c ,其中 a, b, c 是已知的系数(a < 0)。 作为部队统帅,现在你要为这支部队进行编队,使得所有特别行动队修正后 战斗力之和最大。试求出这个最大和。

例如,你有 4 名士兵, x_1 = 2, x_2 = 2, x_3 = 3, x_4 = 4x1​=2,x2​=2,x3​=3,x4​=4 。经验公式中的参数为 a = –1, b = 10, c = –20。此时,最佳方案是将士兵组成 3 个特别行动队:第一队包含士兵 1 和士兵 2,第二队包含士兵 3,第三队包含士兵 4。特别行动队的初始战斗力分 别为 4, 3, 4,修正后的战斗力分别为 4, 1, 4。修正后的战斗力和为 9,没有其它 方案能使修正后的战斗力和更大。

Input

输入由三行组成。第一行包含一个整数 n,表示士兵的总数。第二行包含三 个整数 a, b, c,经验公式中各项的系数。第三行包含 n 个用空格分隔的整数 x_1, x_2, …, x_nx1​,x2​,…,xn​ ,分别表示编号为 1, 2, …, n 的士兵的初始战斗力。

Output

输出一个整数,表示所有特别行动队修正后战斗力之和的最大值。

Sample Input

4

-1 10 -20

2 2 3 4

Sample Output

9

HINT

20%的数据中,n ≤ 1000;

50%的数据中,n ≤ 10,000;

100%的数据中,1 ≤ n ≤ 1,000,000,–5 ≤ a ≤ –1,|b| ≤ 10,000,000,|c| ≤ 10,000,000,1 ≤ xi ≤ 100

Solution

看到这道题的时候,我们可以轻易地先写一个暴力DP(f[i]表示前i个队员战斗力修正后的最大值):

f[i]={max(f[j]+calc(sum[i]-sum[j-1]))}

其中calc()即为图中所给的A*x*x+B*x+Cx*x+B*x+C计算函数。

这样n^2暴力DP显然是过不去的,所以我们需要斜率优化。

如果j的决策比k优秀,即:

f[j]+F(c[i]−c[j])>f[k]+F(c[i]−c[k])

又有F(x)=Ax^2+Bx+CF(x)=Ax^2+Bx+C

直接带入得到

f[j]+A(c[i]-c[j])^2+B(c[i]-c[j])+Cf[j]+A(c[i]−c[j])2+B(c[i]−c[j])+C

右边同理

然后两边同时减掉一部分得

f[j]+Ac[j]^2-2Ac[i]c[j]-Bc[j]>f[k]+Ac[k]^2-2Ac[i]c[k]-Bc[k]f[j]+Ac[j]2−2Ac[i]c[j]−Bc[j]>f[k]+Ac[k]2−2Ac[i]c[k]−Bc[k]

然后:

2Ac[i](c[j]-c[k])<(f[j]+Ac[j]^2-Bc[j])-(f[k]+Ac[k]^2-Bc[k])2Ac[i](c[j]−c[k])<(f[j]+Ac[j]2−Bc[j])−(f[k]+Ac[k]2−Bc[k])

然后:

c[i]<(f[j]+Ac[j]^2-Bc[j])-(f[k]+Ac[k]^2-Bc[k])/2A(c[j]-c[k])(c[j]−c[k])

然后就可以进行斜率优化了。

Code

#include <stdio.h>
#include <algorithm>
#define ll long long
using namespace std;
int a,b,c,n,l,r,h,t;
ll sum[],que[],x[],f[],s[];
ll calc(ll x){return a*x*x+b*x+c;}
ll q(ll x){return f[x]+a*sum[x]*sum[x]-b*sum[x];}
double rate(ll j,ll k){return (q(j)-q(k))*1.0/(2.0*a*(sum[j]-sum[k]));}
int main()
{
scanf("%d",&n);
scanf("%d%d%d",&a,&b,&c);
for(int i=;i<=n;i++)
scanf("%d",&x[i]);
for(int i=;i<=n;i++)
sum[i]=sum[i-]+x[i];
for(int i=;i<=n;i++)
f[i]=-1e18;
for(int i=;i<=n;i++)
{
while(l<r&&rate(que[l],que[l+])<=sum[i]*1.0)l++;
f[i]=f[que[l]]+calc(sum[i]-sum[que[l]]);
while(l<r&&rate(que[r-],que[r])>=rate(que[r],i))r--;
que[++r]=i;
}
printf("%lld",f[n]);
}

APIO 2010 特别行动队 斜率优化DP的更多相关文章

  1. APIO2010 特别行动队 & 斜率优化DP算法笔记

    做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程$f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j]$ 可以变形为 $f[i]=max((a*sum[j ...

  2. [APIO2010]特别行动队 --- 斜率优化DP

    [APIO2010]特别行动队 题面很直白,就不放了. 太套路了,做起来没点感觉了. \(dp(i)=dp(j)+a*(s(i)-s(j))^{2}+b*(s(i)-s(j))+c\) 直接推出一个斜 ...

  3. bzoj1911[Apio2010]特别行动队 斜率优化dp

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 5057  Solved: 2492[Submit][Statu ...

  4. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  5. BZOJ 1911 特别行动队(斜率优化DP)

    应该可以看出这是个很normal的斜率优化式子.推出公式搞一搞即可. # include <cstdio> # include <cstring> # include < ...

  6. luogu3628 特别行动队 (斜率优化dp)

    推出来式子以后斜率优化水过去就完事了 #include<cstdio> #include<cstring> #include<algorithm> #include ...

  7. bzoj1911 [Apio2010]特别行动队——斜率优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1911 相当明显的斜率优化,很好做: 注意slp里面要有(double),以免出现精度问题. ...

  8. 【BZOJ1911】[Apio2010]特别行动队 斜率优化DP

    想了好久啊....——黑字为第一次更新.——这里是第二次更新,维护上下凸包据题而论,第一种方法是化式子的方法,需要好的化式子的方法,第二种是偏向几何,十分好想,纯正的维护凸包的方法,推荐. 用了我感觉 ...

  9. bzoj 1911: [Apio2010]特别行动队 -- 斜率优化

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MB Description Input Output Sample Input 4 ...

随机推荐

  1. 在centos7中安装MySQL5.7

    1.下载mysql源安装包 wget http://dev.mysql.com/get/mysql57-community-release-el7-8.noarch.rpm 2.安装mysql源 yu ...

  2. 二 SSH整合:Spring整合Hibernate,无障碍整合&无核心配置整合,Hibernate模版常用方法,

    重建SSH项目 java项目可以直接复制,但是web项目除了改名字还要该配置,如下: 方式一:无障碍整合:带Hibernate配置文件 <?xml version="1.0" ...

  3. TCP 3次握手 && 4次分手

    原文:https://github.com/jawil/blog/issues/14 3次握手 第一次握手:建立连接.客户端发送连接请求报文段,将SYN位置为1,Sequence Number为x:然 ...

  4. kibana 删除document或者type

    // 删除某个document DELETE /索引名称/type名称/document编号(id) // 删除整个type PUT 索引名称/type名称/_delete_by_query?conf ...

  5. css 图形样式

    参考:https://css-tricks.com/examples/ShapesOfCSS/

  6. 五、生产者消费者模型_ThreadLocal

    1.生产者消费者模型作用和示例如下:1)通过平衡生产者的生产能力和消费者的消费能力来提升整个系统的运行效率 ,这是生产者消费者模型最重要的作用2)解耦,这是生产者消费者模型附带的作用,解耦意味着生产者 ...

  7. MySQL序列解决方案

    MySQL序列解决方案 MySQLOracleSQL  MySQL自增长与Oracle序列的区别: 自增长只能用于表中的其中一个字段 自增长只能被分配给固定表的固定的某一字段,不能被多个表共用. 自增 ...

  8. wumii 爆款总结经验

    在正式创办无秘之前,我们反思前几次创业失败的教训,深刻领悟两点: 第一,内容推荐的精准度取决于平台收集用户数据的能力,如果没有用户行为数据,产品无法做内容推荐,而通过简单的新闻排序,延长用户浏览单篇文 ...

  9. esxi命令行强行关闭虚拟机

    目的:强行关闭通过前端界面无法关闭的ESXI虚拟机 环境:esxi5.1-esxi6.5 背景:如果esxi下面某一台vm死机了,并且esxi的控制台卡死不能用,为了不影响同一个esx下其他的vm正常 ...

  10. pt-archiver 归档数据

    pt-archiver 参数说明pt-archiver是Percona-Toolkit工具集中的一个组件,是一个主要用于对MySQL表数据进行归档和清除工具.它可以将数据归档到另一张表或者是一个文件中 ...