一、岭回归模型

  岭回归其实就是在普通最小二乘法回归(ordinary least squares regression)的基础上,加入了正则化参数λ

二、如何调用

class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver='auto')

alpha:就是上述正则化参数λ;
fit_intercept:默认为true,数据可以拦截,没有中心化;
normalize:输入的样本特征归一化,默认false;
copy_X:复制或者重写;
max_iter:最大迭代次数;
tol: 控制求解的精度;
solver:求解器,有auto, svd, cholesky, sparse_cg, lsqr几种,一般我们选择auto,一些svd,cholesky也都是稀疏表示中常用的omp求解算法中的知识,大家有时间可以去了解。

Ridge函数会返回一个clf类,里面有很多的函数,一般我们用到的有:
clf.fit(X, y):输入训练样本数据X,和对应的标记y;
clf.predict(X):利用学习好的线性分类器,预测标记,一般在fit之后调用;
clf.corf_: 输入回归表示系数

详见:

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge.decision_function

三、Lasso模型(Least absolute shrinkage and selection operator-最小绝对收缩与选择算子)

  Lasso构造的是一个一阶的惩罚函数,满足L1范数,从而使得模型的一些变量参数可能为0(岭回归系数为0的可能性非常低),得到的模型更为精炼。

  Lasso的正则化惩罚函数形式是L1范数,属于绝对值形式,L1范数的好处是当lambda充分大时可以把某些待估参数精确地收缩到0。回归的参数估计经常会有为0的状况,对于这种参数,我们便可以选择对它们进行剔除,就不用我们进行人工选择剔除变量,而可以让程序自动根据是否为0来剔除掉变量了。剔除了无用变量后,可能会使的模型效果更好,因为会存在一些关联比较大的共线变量,从这个角度来看,Lasso回归要优于岭回归。

  scikit-learn对lasso模型的调用与上述岭回归调用大同小异,详见:

  http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html

scikit-learn中的岭回归(Ridge Regression)与Lasso回归的更多相关文章

  1. 岭回归(Ridge Regression)

    一.一般线性回归遇到的问题 在处理复杂的数据的回归问题时,普通的线性回归会遇到一些问题,主要表现在: 预测精度:这里要处理好这样一对为题,即样本的数量和特征的数量 时,最小二乘回归会有较小的方差 时, ...

  2. 机器学习方法:回归(二):稀疏与正则约束ridge regression,Lasso

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. "机器学习方法"系列,我本着开放与共享(open and share)的精神撰写,目的是 ...

  3. ISLR系列:(4.2)模型选择 Ridge Regression & the Lasso

    Linear Model Selection and Regularization 此博文是 An Introduction to Statistical Learning with Applicat ...

  4. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  5. 线性回归大结局(岭(Ridge)、 Lasso回归原理、公式推导),你想要的这里都有

    本文已参与「新人创作礼」活动,一起开启掘金创作之路. 线性模型简介 所谓线性模型就是通过数据的线性组合来拟合一个数据,比如对于一个数据 \(X\) \[X = (x_1, x_2, x_3, ..., ...

  6. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  7. Jordan Lecture Note-4: Linear & Ridge Regression

    Linear & Ridge Regression 对于$n$个数据$\{(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)\},x_i\in\mathbb{R}^d,y ...

  8. 多元线性回归模型的特征压缩:岭回归和Lasso回归

    多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大:因此减少不必要的特征,简化模型是减小方差的一个重要步骤.除了直接对特征筛选,来也可以进行特征压缩,减少某些不重要的特征系数 ...

  9. L1,L2范数和正则化 到lasso ridge regression

    一.范数 L1.L2这种在机器学习方面叫做正则化,统计学领域的人喊她惩罚项,数学界会喊她范数. L0范数  表示向量xx中非零元素的个数. L1范数  表示向量中非零元素的绝对值之和. L2范数  表 ...

  10. 机器学习:模型泛化(LASSO 回归)

    一.基础理解 LASSO 回归(Least Absolute Shrinkage and Selection Operator Regression)是模型正则化的一定方式: 功能:与岭回归一样,解决 ...

随机推荐

  1. 数据包从tcp->ip发出去

    ip_local_out->OUTPUT->dst_out->ip_output-> POSTROUTING -->ip_output_finish 上面的路径中啊,在O ...

  2. asp.net AES加密跟PHP的一致,将加密的2进制byte[]转换为16进制byte[] 的字符串获得

    <?php class AESUtil { public static function encrypt($input, $key) { $size = mcrypt_get_block_siz ...

  3. BZOJ4565 HAOI2016字符合并(区间dp+状压dp)

    设f[i][j][k]为将i~j的字符最终合并成k的答案.转移时只考虑最后一个字符是由哪段后缀合成的.如果最后合成为一个字符特殊转移一下. 复杂度看起来是O(n32k),实际常数极小达到O(玄学). ...

  4. POJ3264:Balanced Lineup——题解+st表解释

    我早期在csdn的博客之一,正好复习st表就拿过来.http://write.blog.csdn.net/mdeditor#!postId=63713810 这道题其实本身不难(前提是你得掌握线段树或 ...

  5. BZOJ5312:冒险——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5312 Kaiser终于成为冒险协会的一员,这次冒险协会派他去冒险,他来到一处古墓,却被大门上的守护 ...

  6. BZOJ2730:[HNOI2012]矿场搭建——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2730 https://www.luogu.org/problemnew/show/P3225 听说 ...

  7. HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化)

    HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化) 题意分析 给出一系列的石头的数量,然后问石头能否被平分成为价值相等的2份.首先可以确定的是如果石头的价值总和为奇数的话,那 ...

  8. angularJS修改 品优购修改品牌(新增和修改用同一个方法)

    前端代码 brand.html <!DOCTYPE html> <html> <head> <meta charset="utf-8"&g ...

  9. maven根据不同的运行环境,打包不同的配置文件(转载)

    使用maven管理项目中的依赖,非常的方便.同时利用maven内置的各种插件,在命令行模式下完成打包.部署等操作,可方便后期的持续集成使用. 但是每一个maven工程(比如web项目),开发人员在开发 ...

  10. 【updating】python读书笔记-The Django Book2.0(for django1.4)

    原文:http://www.djangobook.com/en/2.0/frontmatter.html 译文:http://djangobook.py3k.cn/2.0/ 或者http://docs ...