一、岭回归模型

  岭回归其实就是在普通最小二乘法回归(ordinary least squares regression)的基础上,加入了正则化参数λ

二、如何调用

class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver='auto')

alpha:就是上述正则化参数λ;
fit_intercept:默认为true,数据可以拦截,没有中心化;
normalize:输入的样本特征归一化,默认false;
copy_X:复制或者重写;
max_iter:最大迭代次数;
tol: 控制求解的精度;
solver:求解器,有auto, svd, cholesky, sparse_cg, lsqr几种,一般我们选择auto,一些svd,cholesky也都是稀疏表示中常用的omp求解算法中的知识,大家有时间可以去了解。

Ridge函数会返回一个clf类,里面有很多的函数,一般我们用到的有:
clf.fit(X, y):输入训练样本数据X,和对应的标记y;
clf.predict(X):利用学习好的线性分类器,预测标记,一般在fit之后调用;
clf.corf_: 输入回归表示系数

详见:

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge.decision_function

三、Lasso模型(Least absolute shrinkage and selection operator-最小绝对收缩与选择算子)

  Lasso构造的是一个一阶的惩罚函数,满足L1范数,从而使得模型的一些变量参数可能为0(岭回归系数为0的可能性非常低),得到的模型更为精炼。

  Lasso的正则化惩罚函数形式是L1范数,属于绝对值形式,L1范数的好处是当lambda充分大时可以把某些待估参数精确地收缩到0。回归的参数估计经常会有为0的状况,对于这种参数,我们便可以选择对它们进行剔除,就不用我们进行人工选择剔除变量,而可以让程序自动根据是否为0来剔除掉变量了。剔除了无用变量后,可能会使的模型效果更好,因为会存在一些关联比较大的共线变量,从这个角度来看,Lasso回归要优于岭回归。

  scikit-learn对lasso模型的调用与上述岭回归调用大同小异,详见:

  http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html

scikit-learn中的岭回归(Ridge Regression)与Lasso回归的更多相关文章

  1. 岭回归(Ridge Regression)

    一.一般线性回归遇到的问题 在处理复杂的数据的回归问题时,普通的线性回归会遇到一些问题,主要表现在: 预测精度:这里要处理好这样一对为题,即样本的数量和特征的数量 时,最小二乘回归会有较小的方差 时, ...

  2. 机器学习方法:回归(二):稀疏与正则约束ridge regression,Lasso

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. "机器学习方法"系列,我本着开放与共享(open and share)的精神撰写,目的是 ...

  3. ISLR系列:(4.2)模型选择 Ridge Regression & the Lasso

    Linear Model Selection and Regularization 此博文是 An Introduction to Statistical Learning with Applicat ...

  4. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  5. 线性回归大结局(岭(Ridge)、 Lasso回归原理、公式推导),你想要的这里都有

    本文已参与「新人创作礼」活动,一起开启掘金创作之路. 线性模型简介 所谓线性模型就是通过数据的线性组合来拟合一个数据,比如对于一个数据 \(X\) \[X = (x_1, x_2, x_3, ..., ...

  6. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  7. Jordan Lecture Note-4: Linear & Ridge Regression

    Linear & Ridge Regression 对于$n$个数据$\{(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)\},x_i\in\mathbb{R}^d,y ...

  8. 多元线性回归模型的特征压缩:岭回归和Lasso回归

    多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大:因此减少不必要的特征,简化模型是减小方差的一个重要步骤.除了直接对特征筛选,来也可以进行特征压缩,减少某些不重要的特征系数 ...

  9. L1,L2范数和正则化 到lasso ridge regression

    一.范数 L1.L2这种在机器学习方面叫做正则化,统计学领域的人喊她惩罚项,数学界会喊她范数. L0范数  表示向量xx中非零元素的个数. L1范数  表示向量中非零元素的绝对值之和. L2范数  表 ...

  10. 机器学习:模型泛化(LASSO 回归)

    一.基础理解 LASSO 回归(Least Absolute Shrinkage and Selection Operator Regression)是模型正则化的一定方式: 功能:与岭回归一样,解决 ...

随机推荐

  1. c# 调用c++ 使用指针传递的时候

    http://www.cnblogs.com/warensoft/archive/2011/12/09/warenosoft3d.html 上面这篇文章很好解释了. 简单记录一下: 1. 声明  注意 ...

  2. [STL] 如何将一个vector赋给另一个vector

    vector 有个函数assign, 可以帮助执行赋值操作. assign会清空你的容器. assign函数: 函数原型: void assign(const_iterator first,const ...

  3. Django+haystack实现全文搜索出现错误 ImportError: cannot import name signals

    原因是在你的settings.py或者其他地方使用了  "import haystack" 当我们使用django-haysatck库时,表面上会有haystack库,但实际上并不 ...

  4. chrome源码之恢复上次打开的标签页的学习

    startup_browser_creator_impl.cc ————————>打开任何页面或浏览器的入口函数bool StartupBrowserCreatorImpl::ProcessSt ...

  5. [luogu5048] [Ynoi2019模拟赛] Yuno loves sqrt technology III

    题目链接 洛谷. Solution 思路同[BZOJ2724] [Violet 6]蒲公英,只不过由于lxl过于毒瘤,我们有一些更巧妙的操作. 首先还是预处理\(f[l][r]\)表示\(l\sim ...

  6. CF498D:Traffic Jams in the Land——题解

    https://vjudge.net/problem/CodeForces-498D http://codeforces.com/problemset/problem/498/D 题面描述: 一些国家 ...

  7. React Patterns

    Contents Stateless function JSX spread attributes Destructuring arguments Conditional rendering Chil ...

  8. vector.clear()的内存泄露问题

    在使用vector的过程中,经常会遇到以下场景 vector<int> vec; ) { vec.push_back(); vec.push_back(); vec.push_back() ...

  9. Qt ------ 初始化构造函数参数,parent

    MainWindow::MainWindow(QWidget *parent) : QMainWindow(parent), ui(new Ui::MainWindow) { ui->setup ...

  10. Qt ------- QMap和QHash的区别

    基本概念: QMap提供了一个从类项为key的键到类项为T的直的映射,通常所存储的数据类型是一个键对应一个值,并且按照Key的次序存储数据.同时这个类也支持一键多值的情况,用类QMultiMap可以实 ...