HttpClient client = new HttpClient();
Base64.Encoder encoder = Base64.getEncoder();
HttpMethod method = new GetMethod("http://hdp0:8080/api/v1/clusters/HDP/configurations");
method.addRequestHeader("Authorization",
"Basic " + encoder.encodeToString("admin:admin".getBytes("iso-8859-1")));
method.addRequestHeader("X-Requested-By", "ambari");
client.executeMethod(method);
// 获取YARN的capacity-scheduler属性信息
AmbariClient aClient = new AmbariClient("10.1.108.45", "8080", "admin", "admin");
String typeName = "capacity-scheduler";
String propertieName = "yarn.scheduler.capacity.root.unfunded.capacity";
Map<String, Map<String, String>> map = aClient.getServiceConfigMap(typeName);
for (String key : map.keySet()) {
System.out.println("key: " + key + ";");
Map<String, String> kvs = map.get(key);
for (String name : kvs.keySet()) {
if (name.equals(propertieName)) {
System.out.println("name: " + name + "; value: " + kvs.get(name));
}
}
}
// 修改配置信息
Map<String, String> mapUpdate = new HashMap<String, String>(); mapUpdate.put(propertieName, "55");
aClient.modifyConfiguration(typeName, mapUpdate); map = aClient.getServiceConfigMap(typeName);
for (String key : map.keySet()) {
System.out.println("key: " + key + ";");
Map<String, String> kvs = map.get(key);
for (String name : kvs.keySet()) {
if (name.equals(propertieName)) {
System.out.println("name: " + name + "; value: " + kvs.get(name));
}
}
}

Ambari所有的服务的组件列表:

{"service_name":"HDFS","component_name":"DATANODE","hosts":"c6401.ambari.apache.org"},
{"service_name":"HDFS","component_name":"HDFS_CLIENT","hosts":"c6401.ambari.apache.org"},
{"service_name":"HDFS","component_name":"NAMENODE","hosts":"c6401.ambari.apache.org"},   
{"service_name":"HDFS","component_name":"SECONDARY_NAMENODE","hosts":"c6401.ambari.apache.org"},

{"service_name":"HIVE","component_name":"HCAT","hosts":"c6401.ambari.apache.org"},
{"service_name":"HIVE","component_name":"HIVE_CLIENT","hosts":"c6401.ambari.apache.org"},
{"service_name":"HIVE","component_name":"HIVE_METASTORE","hosts":"c6401.ambari.apache.org"},
{"service_name":"HIVE","component_name":"HIVE_SERVER","hosts":"c6401.ambari.apache.org"},
{"service_name":"HIVE","component_name":"MYSQL_SERVER","hosts":"c6401.ambari.apache.org"},
{"service_name":"HIVE","component_name":"WEBHCAT_SERVER","hosts":"c6401.ambari.apache.org"},

{"service_name":"YARN","component_name":"APP_TIMELINE_SERVER","hosts":"c6401.ambari.apache.org"},
{"service_name":"YARN","component_name":"NODEMANAGER","hosts":"c6401.ambari.apache.org"},
{"service_name":"YARN","component_name":"RESOURCEMANAGER","hosts":"c6401.ambari.apache.org"},
{"service_name":"YARN","component_name":"YARN_CLIENT","hosts":"c6401.ambari.apache.org"},

{"service_name":"MAPREDUCE2","component_name":"HISTORYSERVER","hosts":"c6401.ambari.apache.org"},
{"service_name":"MAPREDUCE2","component_name":"MAPREDUCE2_CLIENT","hosts":"c6401.ambari.apache.org"},
{"service_name":"AMBARI_METRICS","component_name":"METRICS_COLLECTOR","hosts":"c6401.ambari.apache.org"},
{"service_name":"AMBARI_METRICS","component_name":"METRICS_MONITOR","hosts":"c6401.ambari.apache.org"},

{"service_name":"PIG","component_name":"PIG","hosts":"c6401.ambari.apache.org"},

{"service_name":"TEZ","component_name":"TEZ_CLIENT","hosts":"c6401.ambari.apache.org"},

{"service_name":"ZOOKEEPER","component_name":"ZOOKEEPER_CLIENT","hosts":"c6401.ambari.apache.org"},
{"service_name":"ZOOKEEPER","component_name":"ZOOKEEPER_SERVER","hosts":"c6401.ambari.apache.org"}

通过API访问Ambari的配置的更多相关文章

  1. docker 远程rest api 访问配置

    Docker RestApi 的配置及使用 Centos Docker1.12 远程Rest api访问的配置方法 http restapiv1.24 docker sdk for python

  2. asp.net core系列 57 IS4 使用混合流(OIDC+OAuth2.0)添加API访问

    一.概述 在上篇中,探讨了交互式用户身份验证,使用的是OIDC协议. 在之前篇中对API访问使用的是OAuth2.0协议.这篇把这两个部分放在一起,OpenID Connect和OAuth 2.0组合 ...

  3. 第13章 切换到混合流并添加API访问 - Identity Server 4 中文文档(v1.0.0)

    在之前的快速入门中,我们探讨了API访问和用户身份验证.现在我们想把这两个部分放在一起. OpenID Connect和OAuth 2.0组合的优点在于,您可以使用单个协议和使用令牌服务进行单次交换来 ...

  4. Hadoop学习笔记1 - 使用Java API访问远程hdfs集群

    转载请标注原链接 http://www.cnblogs.com/xczyd/p/8570437.html 2018年3月从新司重新起航了.之前在某司过了的蛋疼三个月,也算给自己放了个小假了. 第一个小 ...

  5. 大数据实操2 - hadoop集群访问——Hadoop客户端访问、Java API访问

    上一篇中介绍了hadoop集群搭建方式,本文介绍集群的访问.集群的访问方式有两种:hadoop客户端访问,Java API访问. 一.集群客户端访问 Hadoop采用C/S架构,可以通过客户端对集群进 ...

  6. IdentityServer4 中文文档 -13- (快速入门)切换到混合流并添加 API 访问

    IdentityServer4 中文文档 -13- (快速入门)切换到混合流并添加 API 访问 原文:http://docs.identityserver.io/en/release/quickst ...

  7. IdentityServer4【QuickStart】之切换到混合流并且添加API访问

    切换到混合流并且添加API访问 前面的示例中我们开发了API访问和用户认证,现在我们要将两个合并到一起. OpenID Connect&OAuth 2.0组合的美妙之处是,你可以使用单一协议和 ...

  8. Servlet、Tomcat访问(access)日志配置、记录Post请求参数

    一.运行环境: Maven:3.5.2(点击下载) ,下载页 Tomcat:8.5.29(点击下载) ,下载页 JDK:jdk1.7.0_80(点击下载) ,下载页 MavenDependency: ...

  9. 以太坊api访问,区块同步监测

    以太坊geth api访问,区块同步监测 curl查询geth区块高度 supervisor管理以太坊geth进程 geth进程健康检查 # curl访问geth api #使用curl访问geth ...

随机推荐

  1. Pytorch实现卷积神经网络CNN

    Pytorch是torch的Python版本,对TensorFlow造成很大的冲击,TensorFlow无疑是最流行的,但是Pytorch号称在诸多性能上要优于TensorFlow,比如在RNN的训练 ...

  2. 微信小程序获取用户信息,解密encryptedData 包括敏感数据在内的完整用户信息的加密数据

    package com.iups.wx.wxservice; import java.io.UnsupportedEncodingException; import java.security.Alg ...

  3. Shell awk 求标准差

    cat > temp000180255798957892187719 awk '{x[NR]=$0; s+=$0; n++} END{a=s/n; for (i in x){ss += (x[i ...

  4. hadoop 2.7.3 源码编译教程

    1.工具准备,最靠谱的是hadoop说明文档里要求具备的那些工具. 到hadoop官网,点击source下载hadoop-2.7.3-src.tar.gz. 解压之 tar -zxvf hadoop- ...

  5. struts2——上传图片格式

    <%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...

  6. Pow,求x的y次幂

    算法分析:很显然用递归.但是直接用递归会造成栈溢出,时间复杂度是o(n).所以要用分治思想,时间复杂度是o(logN). public class Power { //栈溢出,时间复杂度是o(n) p ...

  7. PermutationsUnique,求全排列,去重

    问题描述:给定一个数组,数组里面有重复元素,求全排列. 算法分析:和上一道题一样,只不过要去重. import java.util.ArrayList; import java.util.HashSe ...

  8. java对象的深浅clone

    在Java语言中,数据类型分为值类型(基本数据类型)和引用类型,值类型包括int.double.byte.boolean.char等简单数据类型,引用类型包括类.接口.数组等复杂类型. 浅克隆和深克隆 ...

  9. java-登陆界面

    <%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...

  10. KNN 算法,以及与Kmeans的简单对比

    KNN与Kmeans感觉没啥联系,但是名字挺像的,就拿来一起总结一下吧. 初学者的总结. KNN是监督学习,Kmeans是无监督学习. KNN用于分类,Kmeans用于聚类. 先说KNN: 对于KNN ...