Description

A substring of a string T is defined as:

T(ik)=TiTi+1...Ti+k-1, 1≤ii+k-1≤|T|.

Given two strings AB and one integer K, we define S, a set of triples (ijk):

S = {(ijk) | kKA(ik)=B(jk)}.

You are to give the value of |S| for specific AB and K.

Input

The input file contains several blocks of data. For each block, the first line contains one integer K, followed by two lines containing strings A and B, respectively. The input file is ended by K=0.

1 ≤ |A|, |B| ≤ 105
1 ≤ K ≤ min{|A|, |B|}
Characters of A and B are all Latin letters.

Output

For each case, output an integer |S|.

题目大意:给两个字符串,问有多少个长度大于等于K的公共子串。

思路:首先,把两个字符串用一个未出现过的字符(如'$')连起来,求后缀数组和height[]数组。

用每个后缀的所有前缀代表一个字符串的所有子串。

然后,按height[]的顺序从前往后扫描。

遇到第一个字符串的,就压入栈中。遇到第二个字符串的,就计算栈中与第二个字符串的长度大于等于K的公共前缀。

对于栈中每一个height[],它与当前第二个字符串的长度大于等于K的公共前缀一共有height[]-k+1个。

sum{height[]-k+1}可以在压栈的同时统计。

用一个单调栈维护,让每个height[]只入栈和出栈一次。

最后rank小的第一个字符串和rank大的第二个字符串的长度大于等于K的公共前缀就统计出来了,统计复杂度为O(n)。

此时两个字符串反过来再做一遍即可。

代码(1469MS):

 #include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <stack>
using namespace std;
typedef long long LL; const int MAXN = ; char s[MAXN];
int sa[MAXN], rank[MAXN], height[MAXN], c[MAXN], tmp[MAXN];
int n, apart, k; void makesa(int m) {
memset(c, , m * sizeof(int));
for(int i = ; i < n; ++i) ++c[rank[i] = s[i]];
for(int i = ; i < m; ++i) c[i] += c[i - ];
for(int i = ; i < n; ++i) sa[--c[rank[i]]] = i;
for(int k = ; k < n; k <<= ) {
for(int i = ; i < n; ++i) {
int j = sa[i] - k;
if(j < ) j += n;
tmp[c[rank[j]]++] = j;
}
int j = c[] = sa[tmp[]] = ;
for(int i = ; i < n; ++i) {
if(rank[tmp[i]] != rank[tmp[i - ]] || rank[tmp[i] + k] != rank[tmp[i - ] + k])
c[++j] = i;
sa[tmp[i]] = j;
}
memcpy(rank, sa, n * sizeof(int));
memcpy(sa, tmp, n * sizeof(int));
}
} void calheight() {
for(int i = , k = ; i < n; height[rank[i++]] = k) {
k -= (k > );
int j = sa[rank[i] - ];
while(s[i + k] == s[j + k]) ++k;
}
} struct Node {
int height, cnt;
Node(int height = , int cnt = ): height(height), cnt(cnt) {}
}; LL solve() {
LL ans = , sum = ;
stack<Node> stk; for(int i = ; i < n; ++i) {
int cnt = ;
while(!stk.empty() && stk.top().height >= height[i]) {
Node t = stk.top(); stk.pop();
cnt += t.cnt;
sum -= t.cnt * (t.height - k + 1LL);
}
if(height[i] >= k) {
cnt += (sa[i - ] < apart);
if(cnt) stk.push(Node(height[i], cnt));
sum += cnt * (height[i] - k + 1LL);
}
if(sa[i] > apart) ans += sum;
} while(!stk.empty()) stk.pop();
sum = ; for(int i = ; i < n; ++i) {
int cnt = ;
while(!stk.empty() && stk.top().height >= height[i]) {
Node t = stk.top(); stk.pop();
cnt += t.cnt;
sum -= t.cnt * (t.height - k + 1LL);
}
if(height[i] >= k) {
cnt += (sa[i - ] > apart);
stk.push(Node(height[i], cnt));
sum += cnt * (height[i] - k + 1LL);
}
if(sa[i] < apart) ans += sum;
} return ans;
} int main() {
while(scanf("%d", &k) != EOF && k) {
scanf("%s", s);
apart = strlen(s);
s[apart] = '$';
scanf("%s", s + apart + );
n = strlen(s) + ;
makesa();
calheight();
cout<<solve()<<endl;
}
}

POJ 3415 Common Substrings(后缀数组)的更多相关文章

  1. poj 3415 Common Substrings —— 后缀数组+单调栈

    题目:http://poj.org/problem?id=3415 先用后缀数组处理出 ht[i]: 用单调栈维护当前位置 ht[i] 对之前的 ht[j] 取 min 的结果,也就是当前的后缀与之前 ...

  2. poj 3415 Common Substrings——后缀数组+单调栈

    题目:http://poj.org/problem?id=3415 因为求 LCP 是后缀数组的 ht[ ] 上的一段取 min ,所以考虑算出 ht[ ] 之后枚举每个位置作为右端的贡献. 一开始想 ...

  3. POJ 3415 Common Substrings 后缀数组+并查集

    后缀数组,看到网上很多题解都是单调栈,这里提供一个不是单调栈的做法, 首先将两个串 连接起来求height   求完之后按height值从大往小合并.  height值代表的是  sa[i]和sa[i ...

  4. POJ - 3415 Common Substrings (后缀数组)

    A substring of a string T is defined as: T( i, k)= TiTi +1... Ti+k -1, 1≤ i≤ i+k-1≤| T|. Given two s ...

  5. poj 3415 Common Substrings 后缀数组+单调栈

    题目链接 题意:求解两个字符串长度 大于等于k的所有相同子串对有多少个,子串可以相同,只要位置不同即可:两个字符串的长度不超过1e5; 如 s1 = "xx" 和 s2 = &qu ...

  6. poj 3415 Common Substrings - 后缀数组 - 二分答案 - 单调栈

    题目传送门 传送点I 传送点II 题目大意 给定串$A, B$,求$A$和$B$长度大于等于$k$的公共子串的数量. 根据常用套路,用一个奇怪的字符把$A$,$B$连接起来,然后二分答案,然后按mid ...

  7. POJ - 3415 Common Substrings(后缀数组求长度不小于 k 的公共子串的个数+单调栈优化)

    Description A substring of a string T is defined as: T( i, k)= TiTi+1... Ti+k-1, 1≤ i≤ i+k-1≤| T|. G ...

  8. POJ 3415 Common Substrings ——后缀数组

    [题目分析] 判断有多少个长度不小于k的相同子串的数目. N^2显然是可以做到的. 其实可以维护一个关于height的单调栈,统计一下贡献,就可以了. 其实还是挺难写的OTZ. [代码] #inclu ...

  9. POJ.3145.Common Substrings(后缀数组 倍增 单调栈)

    题目链接 \(Description\) 求两个字符串长度不小于k的公共子串对数. \(Solution\) 求出ht[]后先减去k,这样对于两个后缀A',B',它们之间的贡献为min{ht(A)}( ...

  10. POJ 3415 Common Substrings(后缀数组 + 单调栈)题解

    题意: 给两个串\(A.B\),问你长度\(>=k\)的有几对公共子串 思路: 先想一个朴素算法: 把\(B\)接在\(A\)后面,然后去跑后缀数组,得到\(height\)数组,那么直接\(r ...

随机推荐

  1. try...catch..finally..语句中,finally是否必须存在?作用是什么

    try { } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); }finally{ } 1: ...

  2. Yii2之发送电子邮件

    官方文档:http://www.yiiframework.com/doc-2.0/guide-tutorial-mailing.html 使用Yii2框架的时候,有时候需要发送电子邮件,Yiii2提供 ...

  3. JQ中的选择器children()和find()区别

    1:children及find方法都用是用来获得element的子elements的,两者都不会返回 text node,就像大多数的jQuery方法一样. 2:children方法获得的仅仅是元素一 ...

  4. 帝国cms伪静态设置方法(收藏)

    众所周知,动态页面不利于收录和排名.伪静态可以完美的解决这问题,配合百度云加速CDN,可以让动态页面有静态页面一样快的访问速度. 今天开拓族给大家带来帝国CMS伪静态的详细设置方法. 1.栏目设置为动 ...

  5. 【Hbase三】Java,python操作Hbase

    Java,python操作Hbase 操作Hbase python操作Hbase 安装Thrift之前所需准备 安装Thrift 产生针对Python的Hbase的API 启动Thrift服务 执行p ...

  6. 树莓派3B+学习笔记:2、更改显示分辨率

    1.打开终端,输入 sudo raspi-config 选择第7行: 2.选择第5行: 3.选择一个自己习惯的分辨率(我选择1024X768),确定后重启,VNC会自动连接: 4.更改分辨率完成,方便 ...

  7. STM32(10)——窗口看门狗

    简介: 窗口看门狗(WWDG)通常被用来监测由外部干扰或不可预见的逻辑条件造成的应用程序背离正常的运行序列而产生的软件故障.除非递减计数器的值在 T6 位 (WWDG->CR 的第六位)变成 0 ...

  8. 【blockly教程】第四章 Blockly之选择结构

    今天,我们通过一个游戏来学习选择结构,游戏的地址如下:https://blockly-games.appspot.com/bird?lang=en本游戏分为10关:主要游戏规则如下:①主界面是游戏的运 ...

  9. UNIX故障--sun m4000服务器故障硬盘更换案例

    一.故障诊断 查看messages日志c0d0t0这块盘不断报错,类型为:retryable,如下: root@gdhx # more /var/adm/messages Aug  5 16:43:0 ...

  10. MapWindow记录

    增加MapWinGIS的新功能,编译完MapWinGIS,可以生成Debug和Release版本的x64和Win32四种版本, 自己基于c#的Mapwindow如果要用到新添加的功能,此时就得重新注册 ...