BZOJ1023:[SHOI2008]仙人掌图——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=1023
Description
如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌
图(cactus)。所谓简单回路就是指在图上不重复经过任何一个顶点的回路。
举例来说,上面的第一个例子是一张仙人图,而第二个不是——注意到它有三条简单回路:(4,3,2,1,6,5,4)、(7,8,9,10,2,3,7)以及(4,3,7,8,9,10,2,1,6,5,4),而(2,3)同时出现在前两个的简单回路里。另外,第三张图也不是仙人图,因为它并不是连通图。显然,仙人图上的每条边,或者是这张仙人图的桥(bridge),或者在且仅在一个简单回路里,两者必居其一。定义在图上两点之间的距离为这两点之间最短路径的距离。定义一个图的直径为这张图相距最远的两个点的距离。现在我们假定仙人图的每条边的权值都是1,你的任务是求出给定的仙人图的直径。
Input
输入的第一行包括两个整数n和m(1≤n≤50000以及0≤m≤10000)。其中n代表顶点个数,我们约定图中的顶点将从1到n编号。接下来一共有m行。代表m条路径。每行的开始有一个整数k(2≤k≤1000),代表在这条路径上的顶点个数。接下来是k个1到n之间的整数,分别对应了一个顶点,相邻的顶点表示存在一条连接这两个顶点的边。一条路径上可能通过一个顶点好几次,比如对于第一个样例,第一条路径从3经过8,又从8返回到了3,但是我们保证所有的边都会出现在某条路径上,而且不会重复出现在两条路径上,或者在一条路径上出现两次。
Output
只需输出一个数,这个数表示仙人图的直径长度。
Sample Input
9 1 2 3 4 5 6 7 8 3
7 2 9 10 11 12 13 10
5 2 14 9 15 10 8
10 1 2 3 4 5 6 7 8 9 10
Sample Output
9
——————————————————————————
看hzwer的博客吧:http://hzwer.com/4645.html
(以及虽然我知道怎么做了但是不会单调队列的我决定什么时候会了单调队列什么时候再补题解)
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
const int M=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int to;
int nxt;
}edge[M];
int head[N],val[N],num[N],cnt=;
int n,m,low[N],dfn[N],fa[N],t=;
int ans=,dep[N],f[N],a[N*];
int q[N*],l,r;
bool vis[N];
inline void add(int u,int v){
cnt++;
edge[cnt].to=v;
edge[cnt].nxt=head[u];
head[u]=cnt;
return;
}
void dp(int rt,int u){
int delta=dep[u]-dep[rt]+;
for(int i=u;i!=rt;i=fa[i])a[delta--]=f[i];
a[delta]=f[rt];
delta=dep[u]-dep[rt]+;
for(int i=;i<=delta;i++)a[i+delta]=a[i];
q[]=;l=r=;
for(int i=;i<=*delta;i++){
while(l<=r&&i-q[l]>delta/)l++;
ans=max(ans,a[i]+i+a[q[l]]-q[l]);
while(l<=r&&a[q[r]]-q[r]<=a[i]-i)r--;
q[++r]=i;
}
for(int i=;i<=delta;i++){
f[rt]=max(f[rt],a[i]+min(i-,delta-i+));
}
return;
}
void tarjan(int u){
dfn[u]=low[u]=++t;
for(int i=head[u];i;i=edge[i].nxt){
int v=edge[i].to;
if(v==fa[u])continue;
if(!dfn[v]){
fa[v]=u;
dep[v]=dep[u]+;
tarjan(v);
low[u]=min(low[u],low[v]);
}else{
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]<low[v]){//桥
ans=max(ans,f[u]+f[v]+);
f[u]=max(f[u],f[v]+);
}
}
for(int i=head[u];i;i=edge[i].nxt){
int v=edge[i].to;
if(fa[v]!=u&&dfn[u]<dfn[v]){//环
dp(u,v);
}
}
return;
}
int main(){
n=read();m=read();
for(int i=;i<=m;i++){
int k=read(),u=read();
for(int j=;j<=k;j++){
int v=read();
add(u,v);add(v,u);
u=v;
}
}
tarjan();
printf("%d\n",ans);
return ;
}
BZOJ1023:[SHOI2008]仙人掌图——题解的更多相关文章
- BZOJ1023 SHOI2008 仙人掌图 仙人掌、单调队列
传送门 求仙人掌的直径,可以由求树的直径进行拓展,只需要在环上特殊判断. 沿用求树的直径的DP,对于一条不在任何环内的边,直接像树的直径一样转移,然后考虑环的影响. 设环长为\(cir\),在\(df ...
- 【BZOJ1023】仙人掌图(仙人掌,动态规划)
[BZOJ1023]仙人掌图(仙人掌,动态规划) 题面 BZOJ 求仙人掌的直径(两点之间最短路径最大值) 题解 一开始看错题了,以为是求仙人掌中的最长路径... 后来发现看错题了一下就改过来了.. ...
- 洛谷 P4244 [SHOI2008]仙人掌图 II 解题报告
P4244 [SHOI2008]仙人掌图 II 题目背景 题目这个II是和SHOI2006的仙人掌图区分的,bzoj没有. 但是实际上还是和bzoj1023是一个题目的. 题目描述 如果某个无向连通图 ...
- 【bzoj1023】仙人掌图
[bzoj1023]仙人掌图 题意 给一棵仙人掌,求直径. \(n\leq 100000\) 分析 分析1:[Tarjan]+[环处理+单调队列优化线性dp]+[树形dp] 分开两种情况处理: ①环: ...
- [SHOI2008]仙人掌图
[SHOI2008]仙人掌图 LG传送门 还不会仙人掌的同学可以看看我对仙人掌知识的一些梳理. 题意就是求仙人掌的直径,直径定义为图中最短路径最长的两点间的最短路径长度. 按照套路,先考虑求树的直径我 ...
- [SHOI2008]仙人掌图 II——树形dp与环形处理
题意: 给定一个仙人掌,边权为1 距离定义为两个点之间的最短路径 直径定义为距离最远的两个点的距离 求仙人掌直径 题解: 类比树形dp求直径. f[i]表示i向下最多多长 处理链的话,直接dp即可. ...
- SHOI2008仙人掌图(tarjan+dp)
Solution 好题啊没的说. 本题需要求出仙人掌的直径,但仙人掌是一个带有简单环的一张图无法直接用树形dp求解,但它有一个好东西就是没有类似环套环的东西,所以我们在处理时就方便了一些. 思路:ta ...
- 【题解】SHOI2008仙人掌图
本质上还是树形dp.建立圆方树,遇到圆点的时候直接求(和树形dp一样即可),遇到方点做中转点的时候要考虑会从圆的另一侧通过(需满足最短路径的原则).原本是对于圆上的点进行 \(n^{2}\) 的匹配, ...
- Luogu 4244 [SHOI2008]仙人掌图
BZOJ 1023 如果我们把所有的环都缩成一个点,那么整张图就变成了一棵树,我们可以直接$dp$算出树的直径. 设$f_x$表示$x$的子树中最长链的长度,那么对于$x$的每一个儿子$y$,先用$f ...
随机推荐
- Visual Studio 2015 Test Explorer does not show anything
Problem After install Visual Studio 2015 community and NUnit Test Adapter, I cannot find test cases ...
- AirtestIDE实践一:梦幻西游手游师门任务自动化
Airtest Project是网易自研的游戏自动化项目.Airtest IDE是这个项目的一个IDE,就像Eclipse.Pycharm一样,是一个集成开发工具.Airtest框架是一个基于Open ...
- TW实习日记:第24-25天
项目的交付期是真的赶...一直在不断地修改一些小bug,然后消息推送功能出了一个问题,就是不知道为什么PC端会发送两次消息到移动端后台.其中第一条正常第二条会有乱码不正常,可以说是很奇怪了,一开始都认 ...
- Java并发基础--volatile关键字
一.java内存模型 1.java内存模型 程序运行过程中的临时数据是存放在主存(物理内存)中,但是现代计算机CPU的运算能力和速度非常的高效,从内存中读取和写入数据的速度跟不上CPU的处理速度,在这 ...
- 树莓派怎么连接无线网wifi?
没有显示器的同学,想要连接无线网,一定非常苦恼,前面教会了大家远程登录图形界面,下面我将教会大家:在没有图形界面的情况下,怎么连接树莓派WiFi.同样还是利用putty远程访问软件登录,但这次不需要登 ...
- JavaScript --经典问题
JavaScript中如何检测一个变量是一个String类型?请写出函数实现 方法1. function isString(obj){ return typeof(obj) === "str ...
- Java学习 · 初识 面向对象基础一
面向对象基础 1.1面向过程与面向对象的区别 面向过程和面向对象二者都是思考问题的方式,再简单的事物时,可以线性思考时使用面向过程,但当事物较为复杂时,只能使用面向对象设计.但二者并不是对立的,在解决 ...
- 京东2018秋招c++岗 神奇数
题意大概是: 一个数比如242,把所有数字分成两组,而且两组的和相等,那么这个数就是神奇数,此时242,能够分成{2,2}和{4},所以242是神奇数. 题目要求输入n和m求[n,m]区间内神奇数的个 ...
- 关于LNMP常见问题和性能方面的个人理解
简单整理,自己做备忘的,不为其他作任何参考- PHP程序 1.开启慢日志,过滤超时时间为1s的方法,针对性优化,可以通过添加缓存方式解决. 2.过滤access日志,统计哪些请求较多较为频繁,是否合理 ...
- LintCode-211.字符串置换
字符串置换 给定两个字符串,请设计一个方法来判定其中一个字符串是否为另一个字符串的置换. 置换的意思是,通过改变顺序可以使得两个字符串相等. 样例 "abc" 为 "cb ...