【刷题】BZOJ 2179 FFT快速傅立叶
Description
给出两个n位10进制整数x和y,你需要计算x*y。
Input
第一行一个正整数n。 第二行描述一个位数为n的正整数x。 第三行描述一个位数为n的正整数y。
Output
输出一行,即x*y的结果。
Sample Input
1
3
4
Sample Output
12
数据范围:
n<=60000
Solution
水体一道
把一个数变化一下, \(\overline {xyz}=x*10^2+y*10^1+z*10^0\) ,就是一个多项式形式了
两个数相乘,多项式相乘,FFT
然后处理进位就好了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=1<<19;
const db Pi=acos(-1.0);
int n,m,qn,rev[MAXN],cnt,ans[MAXN];
char s1[MAXN],s2[MAXN];
struct Complex{
db real,imag;
inline Complex operator + (const Complex &A) const {
return (Complex){real+A.real,imag+A.imag};
};
inline Complex operator - (const Complex &A) const {
return (Complex){real-A.real,imag-A.imag};
};
inline Complex operator * (const Complex &A) const {
return (Complex){real*A.real-imag*A.imag,imag*A.real+real*A.imag};
};
};
Complex x[MAXN],y[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void FFT(Complex *A,int tp)
{
for(register int i=0;i<n;++i)
if(i<rev[i])std::swap(A[i],A[rev[i]]);
for(register int l=2;l<=n;l<<=1)
{
Complex wn=(Complex){cos(2*Pi/l),sin(tp*2*Pi/l)};
for(register int i=0;i<n;i+=l)
{
Complex w=(Complex){1,0};
for(register int j=0;j<(l>>1);++j)
{
Complex A1=A[i+j],A2=w*A[i+j+(l>>1)];
A[i+j]=A1+A2,A[i+j+(l>>1)]=A1-A2;
w=w*wn;
}
}
}
}
int main()
{
read(qn);
scanf("%s",s1);scanf("%s",s2);
for(register int i=0;i<qn;++i)x[qn-i-1].real=s1[i]-'0';
for(register int i=0;i<qn;++i)y[qn-i-1].real=s2[i]-'0';
m=qn+qn-1;
for(n=1;n<m;n<<=1)cnt++;
for(register int i=0;i<n;++i)rev[i]=(rev[i>>1]>>1)|((i&1)<<(cnt-1));
FFT(x,1);FFT(y,1);
for(register int i=0;i<n;++i)x[i]=x[i]*y[i];
FFT(x,-1);
int ps=0;
for(register int i=m-1;i>=0;--i)
if((int)(x[i].real/n+0.5)!=0)
{
ps=i;
break;
}
for(register int i=ps;i>=0;--i)ans[i]=(int)(x[i].real/n+0.5);
for(register int i=0;i<ps;++i)ans[i+1]+=ans[i]/10,ans[i]%=10;
for(register int i=ps;i>=0;--i)write(ans[i]);
puts("");
return 0;
}
【刷题】BZOJ 2179 FFT快速傅立叶的更多相关文章
- BZOJ 2179: FFT快速傅立叶
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2923 Solved: 1498[Submit][Status][Di ...
- bzoj 2179: FFT快速傅立叶 -- FFT
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MB Description 给出两个n位10进制整数x和y,你需要计算x*y. Input ...
- BZOJ 2179 FFT快速傅立叶 题解
bzoj 2179 Description 给出两个n位10进制整数x和y,你需要计算x*y. [题目分析] 高精裸题.练手. [代码] 1.手动高精 #include<cstdio> # ...
- bzoj 2179 FFT快速傅立叶 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2179 默写板子,注释的是忘记的地方. 代码如下: #include<iostream& ...
- BZOJ 2179 FFT快速傅立叶 ——FFT
[题目分析] 快速傅里叶变换用于高精度乘法. 其实本质就是循环卷积的计算,也就是多项式的乘法. 两次蝴蝶变换. 二进制取反化递归为迭代. 单位根的巧妙取值,是的复杂度成为了nlogn 范德蒙矩阵计算逆 ...
- 【BZOJ 2179】 2179: FFT快速傅立叶 (FFT)
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3308 Solved: 1720 Description 给出两个n位 ...
- 【BZOJ】2179: FFT快速傅立叶(fft)
http://www.lydsy.com/JudgeOnline/problem.php?id=2179 fft裸题.... 为嘛我的那么慢....1000多ms.. #include <cst ...
- 【bzoj2179】FFT快速傅立叶 FFT模板
2016-06-01 09:34:54 很久很久很久以前写的了... 今天又比较了一下效率,貌似手写复数要快很多. 贴一下模板: #include<iostream> #include& ...
- 【BZOJ2179】FFT快速傅立叶
[BZOJ2179]FFT快速傅立叶 Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位 ...
随机推荐
- hdu 2187(凸包直径 1.枚举 2.旋转卡壳)
Beauty Contest Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 33115 Accepted: 10278 ...
- HDU - 6444(单调队列+思维)
链接:HDU - 6444 题意:给出一个包含 n 个数的环,每个数都有一个价值,起点任选,每次跳顺时针跳 k 个数,在哪个数就能获得该价值(包括起点),最多取 m 次,问最少需要补充多少价值,所拿的 ...
- Oracle作业练习题
第一问 //登陆scott用户 //解锁 alter user scott account unlock; //给用户申请密码 alter user scott identified by tiger ...
- 【system.array】使用说明
对象:system.array 说明:提供一系列针对数组类型的操作 目录: 方法 返回 说明 system.array.join( array, separator ) [String] 将数组转换 ...
- 关于java中的“error: bad operand types for binary operator ”
今天做这个题目的时候(142. O(1) Check Power of 2),遇到一个错误“ bad operand types for binary operator '&' ”. 先贴一下 ...
- Java学习 · 初识 容器和数据结构
容器和数据结构 1. 集合的引入 a) 集合的使用场景:需要将一些相同结构的个体整合到一起时 i. 新闻列表 ii. 邮件列表 iii. ...
- gdb超级基础教程
GDB超级基础教程 为什么叫超级基础呢,因为我被坑了一把.... 编译选项带 -g 就可以在可执行程序中加入调试信息,然后就可以使用gdb去查看了. 使用help命令就可以看到: (gdb) help ...
- 【递归入门】组合+判断素数:dfs(递归)
题目描述 已知 n 个整数b1,b2,…,bn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和. 例如当 n=4,k=3,4 个整数分别为 3,7,12, ...
- LeetCode 386——字典序排数
1. 题目 2. 解答 2.1 方法一 假设返回 118 以内数的字典顺序,则为 1,10,100,101,102,...,109,11,110,111,112,...,118,12,13,....根 ...
- C Program基础-宏定义
写好c语言,漂亮的宏定义是非常重要的,我们在阅读别人工程时,往往能看到大量的宏定义,宏定义可以增加代码的可读性,也能增加代码的可移植性,一个好的宏定义甚至是一件艺术品.今天我们就来看看宏定义的方方面面 ...