计数题萌萌哒~

  这道题其实就是统计 \(\sum_{i=1}^{n}\sum_{j=i+1}^{n}C\binom{a[i] + a[j]}{a[i] + a[j] + b[i] + b[j]}\) 。这个式子不是很好统计,我们可以转化一下:

 \((\sum_{i=1}^{n}\sum_{j=i+1}^{n}C\binom{a[i] + a[j]}{a[i] + a[j] + b[i] + b[j]} - \sum_{i = 1}^{n}C\binom{2 * a[i]}{2 * a[i] + 2 * b[i]}) / 2\)

  这样的话,我们只需要考虑如何统计前一部分的贡献即可。前一部分的贡献是多少呢?就是平面上所有的点 \((-a[j], -b[j])\) 到达 \((a[i],b[i])\) 的方案数。这个我们可以 \(a[i]^{2}\)的 dp 统计。**启示:有时缩小限制好,有时放宽限制容斥计算大法好哇~~

#include <bits/stdc++.h>
using namespace std;
#define maxn 2500000
#define mod 1000000007
#define maxm 4020
#define int long long
int n, a[maxn], b[maxn], inv[maxn], fac[maxn];
int ans, m, S = , f[maxm][maxm]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void Up(int &x, int y) { x = (x + y) % mod; }
int C(int n, int m)
{
if(n < m || m < || n < ) return ;
return fac[n] * inv[m] % mod * inv[n - m] % mod;
} void pre()
{
fac[] = fac[] = ; inv[] = inv[] = ;
for(int i = ; i < maxn; i ++) fac[i] = fac[i - ] * i % mod;
for(int i = ; i < maxn; i ++) inv[i] = (mod - mod / i) * inv[mod % i] % mod;
for(int i = ; i < maxn; i ++) inv[i] = inv[i] * inv[i - ] % mod;
} signed main()
{
pre(); n = read();
for(int i = ; i <= n; i ++)
{
a[i] = read(), b[i] = read();
f[-a[i] + S][-b[i] + S] ++;
}
m = * S;
for(int i = ; i <= m; i ++)
for(int j = ; j <= m; j ++)
Up(f[i][j], (f[i - ][j] + f[i][j - ]) % mod);
for(int i = ; i <= n; i ++)
{
Up(ans, f[a[i] + S][b[i] + S]);
Up(ans, mod - C( * (a[i] + b[i]), * a[i]));
}
printf("%lld\n", ans * inv[] % mod);
return ;
}

【题解】Atcoder AGC#01 E-BBQ Hard的更多相关文章

  1. [题解] Atcoder AGC 005 F Many Easy Problems NTT,组合数学

    题目 观察当k固定时答案是什么.先假设每个节点对答案的贡献都是\(\binom{n}{k}\),然后再减掉某个点没有贡献的选点方案数.对于一个节点i,它没有贡献的方案数显然就是所有k个节点都选在i连出 ...

  2. 【题解】Atcoder AGC#16 E-Poor Turkeys

    %拜!颜神怒A此题,像我这样的渣渣只能看看题解度日╭(╯^╰)╮在这里把两种做法都记录一下吧~ 题解做法:可以考虑单独的一只鸡 u 能否存活.首先我们将 u 加入到集合S.然后我们按照时间倒序往回推, ...

  3. 【题解】Atcoder AGC#03 E-Sequential operations on Sequence

    仙题膜拜系列...首先我们可以发现:如果在截取了一段大的区间之后再截取一段小的区间,显然是没有什么用的.所以我们可以将操作序列变成单调递增的序列. 然后怎么考虑呢?启示:不一定要考虑每一个数字出现的次 ...

  4. 【做题记录】AtCoder AGC做题记录

    做一下AtCoder的AGC锻炼一下思维吧 目前已做题数: 75 总共题数: 239 每一场比赛后面的字母是做完的题,括号里是写完题解的题 AGC001: ABCDEF (DEF) AGC002: A ...

  5. AtCoder AGC #2 Virtual Participation

    在知乎上听zzx大佬说AGC练智商...于是试了一下 A.Range Product 给$a$,$b$,求$\prod^{b}_{i=a}i$是正数,负数还是$0$ ...不写了 B.Box and ...

  6. Atcoder Grand Contest 001E - BBQ Hard(组合意义转化,思维题)

    Atcoder 题面传送门 & 洛谷题面传送门 Yet another 思维题-- 注意到此题 \(n\) 数据范围很大,但是 \(a_i,b_i\) 数据范围很小,这能给我们什么启发呢? 观 ...

  7. 题解-AtCoder Code-Festival2017 Final-J Tree MST

    Problem \(\mathrm{Code~Festival~2017~Final~J}\) 题意概要:一棵 \(n\) 个节点有点权边权的树.构建一张完全图,对于任意一对点 \((x,y)\),连 ...

  8. 题解-AtCoder Code-Festival2017qualA-E Modern Painting

    Problem CODE-FESTIVAL 2017 qual A 洛谷账户的提交通道 题意:有一个\(n\)行\(m\)列的方格,在边界外有可能有机器人(坐标为\((0,x),(n+1,x),(x, ...

  9. 题解——ATCoder AtCoder Grand Contest 017 B - Moderate Differences(数学,构造)

    题面 B - Moderate Differences Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Stat ...

随机推荐

  1. C#第一阶段——结构体

    概念理解:        很多相互联系的信息可以组成一个整体.比如一个学生的信息包括学号.姓名.性别.年龄等,它们紧密联系,共同描述学生的状况.在 C#中我们可以把这些紧密联系变量定义成结构体(Str ...

  2. C++中的引用常见用法

    1.引用的内涵 引用就是给变量取外号而已. 2.四种不能使用引用的情况 void &r=x; //不能建立void类型引用 int &&r=x; //不能建立引用的引用 int ...

  3. 转 Cobar使用文档(可用作MySQL大型集群解决方案)

    转自:http://blog.csdn.net/shagoo/article/details/8191346 最近好不容易抽空研究了下Cobar,感觉这个产品确实很不错(在文档方面比Amoeba强多了 ...

  4. mysql新手进阶03

    当年忠贞为国酬,何曾怕断头? 如今天下红遍,江山靠谁守? 业未就,身躯倦,鬓已秋. 你我之辈,忍将夙愿,付与东流? 数据库结构如下: 仓库(仓库号, 城市, 面积) 订购单(职工号, 供应商号, 订购 ...

  5. Unity Lighting - Choosing a Rendering Path 选择渲染路径(三)

      Choosing a Rendering Path 选择渲染路径 Unity supports a number of rendering techniques, or ‘paths’. An i ...

  6. Dask教程

    Dask 介绍 Dask是一款用于分析计算的灵活并行计算库. Dask由两部分组成: 针对计算优化的动态任务调度.这与Airflow,Luigi,Celery或Make类似,但针对交互式计算工作负载进 ...

  7. 使用深度学习来破解 captcha 验证码(转)

    使用深度学习来破解 captcha 验证码 本项目会通过 Keras 搭建一个深度卷积神经网络来识别 captcha 验证码,建议使用显卡来运行该项目. 下面的可视化代码都是在 jupyter not ...

  8. scatter注记词

    say illness thumb ginger brass atom twenty omit fine thought staff poverty

  9. HADOOP docker(三):HDFS高可用实验

      前言1.机器环境2.配置HA2.1 修改hdfs-site.xml2.2 设置core-site.xml3.配置手动HA3.1 关闭YARN.HDFS3.2 启动HDFS HA4.配置自动HA4. ...

  10. nodejs笔记--express篇(五)

    创建一个express + ejs的项目 express -e testEjsWebApp cd testEjsWebApp npm install http://localhost:3000 Usa ...