BZOJ2830 & 洛谷3830:[SHOI2012]随机树——题解
https://www.luogu.org/problemnew/show/P3830#sub <-题面看这里~
https://www.lydsy.com/JudgeOnline/problem.php?id=2830
感觉智商被压制了的一题……后面放吐槽。
参考:https://www.cnblogs.com/GuessYCB/p/8462490.html
——————————————
对于叶结点平均深度,我们令f(x)=(a1+...+ax)/x来表示(a可以每个叶子结点(人为标号)深度的期望)。
那么我们只需要枚举每个a,然后在a上面展开?再除x?
我们为什么不用f(x-1)表示我们要展开的叶子的深度呢?于是第一问我们做完了。
——————————————
第二问设f[x][d]表示叶子数为x深度大于等于d的树的期望。
最后答案就是f[n]累加的结果(简单思考就知道为什么了)
那么对于根,枚举左右儿子挂了多少叶子即可。
一次转移就是f[x][d]=sigma f[i][d-1]+f[x-i][d-1]-f[i][d-1]*f[x-i][d-1] 最后除以x-1即可。
第一个概率是左子树深度为d-1,第二个是右子树深度为d-1,第三个是容斥。
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef double dl;
const int N=;
int q,n;
dl f[N][N];
void solve1(){
dl ans=;
for(int i=;i<=n;i++)ans+=2.0/i;
printf("%.6lf\n",ans);
}
void solve2(){
dl ans=;
for(int i=;i<=n;i++)f[i][]=;
for(int i=;i<=n;i++){
for(int j=;j<=i;j++){
for(int k=;k<i;k++){
f[i][j]+=f[k][j-]+f[i-k][j-]-f[k][j-]*f[i-k][j-];
}
f[i][j]/=i-;
}
}
for(int i=;i<=n;i++){
ans+=f[n][i];
}
printf("%.6lf\n",ans);
}
int main(){
scanf("%d%d",&q,&n);
if(q==)solve1();
else solve2();
return ;
}
吐槽时间:
第一问我是真的傻没想到用f(x-1)来表示我们展开的结点(我还考虑a要怎么求呢……后来发现我根本不会。)
第二问考虑过设f[i]为i个叶子结点时的期望深度,设g[i]为i个叶子结点的最深的叶子的期望个数,答案就是f[i]=f[i-1]+g[i]/i。
但是推g很恶心,反正推了半天也没过样例就很gg。
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +
+++++++++++++++++++++++++++++++++++++++++++
BZOJ2830 & 洛谷3830:[SHOI2012]随机树——题解的更多相关文章
- 【BZOJ2830/洛谷3830】随机树(动态规划)
[BZOJ2830/洛谷3830]随机树(动态规划) 题面 洛谷 题解 先考虑第一问. 第一问的答案显然就是所有情况下所有点的深度的平均数. 考虑新加入的两个点,一定会删去某个叶子,然后新加入两个深度 ...
- 洛谷3830 [SHOI2012]随机树 【概率dp】
题目 输入格式 输入仅有一行,包含两个正整数 q, n,分别表示问题编号以及叶结点的个数. 输出格式 输出仅有一行,包含一个实数 d,四舍五入精确到小数点后 6 位.如果 q = 1,则 d 表示叶结 ...
- 洛谷P3830 [SHOI2012]随机树(期望dp)
题面 luogu 题解 第一问: 设\(f[i]\)表示\(i\)步操作后,平均深度期望 \(f[i] = \frac {f[i - 1] * (i - 1)+f[i-1]+2}{i}=f[i-1]+ ...
- 洛谷 P3830 [SHOI2012]随机树
https://www.luogu.org/problemnew/show/P3830 具体方法见代码.. 其实挺神奇的,概率可以先算出“前缀和”(A小于等于xxx的概率),然后再“差分”得到A恰好为 ...
- 洛谷P3830 [SHOI2012]随机树——概率期望
题目:https://www.luogu.org/problemnew/show/P3830 询问1:f[x]表示有x个叶节点的树的叶节点平均深度: 可以把被扩展的点的深度看做 f[x-1] ,于是两 ...
- P3830 [SHOI2012]随机树 题解
P3830 随机树 坑题,别人的题解我看了一个下午没一个看得懂的,我还是太弱了. 题目链接 P3830 [SHOI2012]随机树 题目描述 输入输出格式 输入格式: 输入仅有一行,包含两个正整数 q ...
- 洛谷P3833 [SHOI2012]魔法树(树链剖分)
传送门 树剖板子…… 一个路径加和,线段树上打标记.一个子树询问,dfs的时候记录一下子树的区间就行 // luogu-judger-enable-o2 //minamoto #include< ...
- bzoj2830: [Shoi2012]随机树
题目链接 bzoj2830: [Shoi2012]随机树 题解 q1好做 设f[n]为扩展n次后的平均深度 那么\(f[n] = \frac{f[n - 1] * (n - 1) + f[n - 1] ...
- 洛谷P1783 海滩防御 分析+题解代码
洛谷P1783 海滩防御 分析+题解代码 题目描述: WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和 ...
随机推荐
- QXDM及QCAT软件使用入门指南V1.0
链接:https://pan.baidu.com/s/1i55YXnf 密码:v6nw
- 「题目代码」P1066~P1070(Java)
P1066 谭浩强C语言(第三版)习题8.6 import java.util.*; import java.io.*; import java.math.*; import java.lang.Ch ...
- katalon系列五:使用Katalon Studio手动编写WEB自动化脚本
上一篇主要讲了怎么录制脚本,这次我们看看怎么手动编写脚本,接下来就编写一个简单的用百度搜索的脚本. 1.我们先抓取页面上的元素,点击工具栏上的Spy Web按钮(地球上有个绿点),URL输入百度地址, ...
- Period :KMP
I - Period Problem Description For each prefix of a given string S with N characters (each character ...
- day-16 CNN卷积神经网络算法之Max pooling池化操作学习
利用CNN卷积神经网络进行训练时,进行完卷积运算,还需要接着进行Max pooling池化操作,目的是在尽量不丢失图像特征前期下,对图像进行downsampling. 首先看下max pooling的 ...
- VBA基础之Excel 工作薄(Book)的操作(三)
三. Excel 工作薄(Book)的操作1. Excel 创建工作薄(Book) Sub addWorkbook() Workbooks.Add End Sub 2. Excel 打开工作薄(Boo ...
- Tarball——以源代码的方式安装软件
一.Tarball文件 形成:将软件的所有源码文件先以tar打包,然后再以压缩技术(如gzip)来压缩.因为源码文件很大. 描述:一个软件包,解压缩后得到源代码文件.检测程序文件.软件的简易说明与安装 ...
- HDU 5816 Hearthstone 概率dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5816 Hearthstone Time Limit: 2000/1000 MS (Java/Othe ...
- [zt]手把手教你写对拍程序(PASCAL)
谁适合看这篇文章? ACMERS,OIERS或其它参加算法竞赛或需要算法的人 对操作系统并不太熟悉的人 不会写对拍的人 在网上找不到一个特别详细的对拍样例的人 不嫌弃我写的太低幼的人 前言 在NOIP ...
- python学习第二天-基本数据类型常用方法
1.直入主题 python中基本的数据类型有 数字(整形,长整形,浮点型,复数) 字符串 字节串:在介绍字符编码时介绍字节bytes类型 列表 元组 字典 集合 下面我们直接将以下面几个点进行学习 # ...