图论:最短路-Dijkstra
Dijkstra+堆优化具有稳定的时间复杂度,在一些数据范围要求比较严格(准确来说是图比较苛刻)的时候能够保证稳定的时间复杂度
但是Dijkstra不能够解决负边权的问题,所以在使用的时候一定要仔细读题
如果题目说了边权非负,首选Dijkstra算法, 如果图不是一些特殊的数据,可以尝试SPFA算法,毕竟在稀疏图面前,SPFA有着绝对的优势
Dijkstra和Prim很相似,它们的区别主要是d的含义,前者是到s的临时最短距离,后者是到树的临时最短距离,相同点是,每次找d最小的更新其它点的距离
然后,我们开始介绍用法:
int s,n,m,cnt;
int g[maxn],d[maxn];
struct Edge{int u,t,w,next;}e[maxm];
struct HeapNode{int d,u;bool operator <(const HeapNode& x) const{return d>x.d;}};
priority_queue<HeapNode> q;
在Bellman-Ford中相同的字眼我们不介绍,意义一致
HeapNode结构体和优先队列用来实现一个最小堆,堆元素是点,记录了节点号和距离值
void dijkstra(int s)
{
for(int i=;i<=n;i++) d[i]=INF;
d[s]=;
HeapNode p;
p.d=;p.u=s;q.push(p);
while(!q.empty())
{
HeapNode x=q.top(); q.pop();
int u=x.u;
if(x.d!=d[u]) continue;
for(int tmp=g[u];tmp;tmp=e[tmp].next)
if(d[e[tmp].t]>d[u]+e[tmp].w)
{
d[e[tmp].t]=d[u]+e[tmp].w;
p.d=d[e[tmp].t];p.u=e[tmp].t;q.push(p);
}
}
}
如果你能够写明白邻接矩阵的Dijkstra算法,这里具有完全一致的意义,只不过用最小堆来找距离当前点集距离最小的点,把一遍遍历变成了Log级别的
然后这里的Dijkstra算法如果用邻接矩阵的话,就是被打回原形了,所以一定要用邻接表或者邻接数组来存储
下面给出完整实现:
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int INF=0x7fffffff;
const int maxn=;
const int maxm=;
int s,n,m,cnt;
int g[maxn],d[maxn];
struct Edge{int u,t,w,next;}e[maxm];
struct HeapNode{int d,u;bool operator <(const HeapNode& x) const{return d>x.d;}};
priority_queue<HeapNode> q;
void addedge(int x,int y,int z)
{
cnt++;e[cnt].u=x;e[cnt].t=y;e[cnt].w=z;
e[cnt].next=g[x];g[x]=cnt;
}
void dijkstra(int s)
{
for(int i=;i<=n;i++) d[i]=INF;
d[s]=;
HeapNode p;
p.d=;p.u=s;q.push(p);
while(!q.empty())
{
HeapNode x=q.top(); q.pop();
int u=x.u;
if(x.d!=d[u]) continue;
for(int tmp=g[u];tmp;tmp=e[tmp].next)
if(d[e[tmp].t]>d[u]+e[tmp].w)
{
d[e[tmp].t]=d[u]+e[tmp].w;
p.d=d[e[tmp].t];p.u=e[tmp].t;q.push(p);
}
}
}
int main()
{
scanf("%d%d%d",&n,&m,&s);
int x,y,z;
for(int i=;i<=m;i++) {scanf("%d%d%d",&x,&y,&z);addedge(x,y,z);}
dijkstra(s);
for(int i=;i<=n;i++) {printf("%d ",d[i]);}
return ;
}
图论:最短路-Dijkstra的更多相关文章
- 图论--最短路--dijkstra(含路径输出)模板
#include<iostream> #include<stack> #include<queue> #include<cstring> #includ ...
- 图论最短路——dijkstra
下午直接开始dijkstra的堆优化,很简单的这里把书上的原理说一下吧,小心和prim最小生成树的堆优化迷,Dijkstra算法基于贪心思想,它只适用于所有边都是非负数的图.当变长z都是非负数的时候, ...
- 图论--最短路-- Dijkstra模板(目前见到的最好用的)
之前的我那个板子,老是卡内存,不知道为什么,我看别人过的那个题都是结构体,我就开始对自己板子做了修改,然后他奶奶的就过了,而且速度也提高了,内存也小了.(自从用了这个板子,隔壁小孩馋哭了)也不知道为啥 ...
- 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法
图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...
- 图论(最短路&最小生成树)
图论 图的定义与概念 图的分类 图,根据点数和边数可分为三种:完全图,稠密图与稀疏图. 完全图,即\(m=n^2\)的图\((m\)为边数,\(n\)为点数\()\).如: 1 1 0 1 2 1 1 ...
- 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树)
layout: post title: 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树) author: "luowentaoaa" ca ...
- 训练指南 UVA - 10917(最短路Dijkstra + 基础DP)
layout: post title: 训练指南 UVA - 10917(最短路Dijkstra + 基础DP) author: "luowentaoaa" catalog: tr ...
- 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)
layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalo ...
- hdu 2544 最短路 Dijkstra
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 题目分析:比较简单的最短路算法应用.题目告知起点与终点的位置,以及各路口之间路径到达所需的时间, ...
- 单源最短路dijkstra算法&&优化史
一下午都在学最短路dijkstra算法,总算是优化到了我能达到的水平的最快水准,然后列举一下我的优化历史,顺便总结总结 最朴素算法: 邻接矩阵存边+贪心||dp思想,几乎纯暴力,luoguTLE+ML ...
随机推荐
- Sum of Consecutive Prime Numbers(素数打表+尺取)
Description Some positive integers can be represented by a sum of one or more consecutive prime numb ...
- 《梦断代码Dreaming In Code》阅读计划
书籍是人类宝贵的精神财富,读书是人们重要的学习方式,是人生奋斗的航灯,是文化传承的通道,是人类进步的阶梯.学生作为学习人群的主体,必须把读书作为头等大事.学校就是一个学生在教师指导下自主读书的空间,而 ...
- Hadoop 版本 生态圈 MapReduce模型
忘的差不多了, 先补概念, 然后开始搭建集群实战 ... . 一 Hadoop版本 和 生态圈 1. Hadoop版本 (1) Apache Hadoop版本介绍 Apache的开源项目开发流程 : ...
- LintCode-53.翻转字符串
翻转字符串 给定一个字符串,逐个翻转字符串中的每个单词. 说明 单词的构成:无空格字母构成一个单词 输入字符串是否包括前导或者尾随空格?可以包括,但是反转后的字符不能包括 如何处理两个单词间的多个空格 ...
- vue服务端渲染简单入门实例
想到要学习vue-ssr的同学,自不必多说,一定是熟悉了vue,并且多多少少做过几个项目.然后学习vue服务端渲染无非解决首屏渲染的白屏问题以及SEO友好. 话不多说,笔者也是研究多日才搞明白这个服务 ...
- windows批处理学习---01
一. 标记符号: CR(0D) 命令行结束符 Escape(1B) ANSI转义字符引导符 Space() 常用的参数界定符 Tab() ; = 不常用的参数界定符 + COPY命令文件连接符 * ? ...
- ubuntu 安装lua错误
转自:http://www.cnblogs.com/softidea/archive/2016/03/02/5236498.html lua.c:80:31: fatal error: readlin ...
- IIS安装出现“安装程序无法复制文件CONVLOG.EX_”的解决办法
重新安装了一次IIS,结果就在重新安装的时候,出现安装程序无法复制文件CONVLOG.EX_,上网找了找资料,是因为secedit.sdb 数据库的问题,既然是因为这个文件的问题,那么我们就可以使用w ...
- FastReport.net 常用方法
一.页面设置 情景:FastReport设计器页面默认设置为A4纸,但如果需要显示的字段过多,这时就出现了页面的大小无法满足完整显示所需内容的问题. 解决:出现这个问题后,我们可以在来到"文 ...
- Android studio出现Error:Unable to tunnel through proxy. Proxy returns "HTTP/1.1 400 Bad Request"的解决办法
最近更新了一下Android Studio(下文简写成AS),然后打开工程发现出现Error:Unable to tunnel through proxy. Proxy returns "H ...