RDD原理与详解
RDD详解
原文连接 http://xiguada.org/spark_rdd/
RDD(Resilient Distributed Datasets弹性分布式数据集),是spark中最重要的概念,可以简单的把RDD理解成一个提供了许多操作接口的数据集合,和一般数据集不同的是,其实际数据分布存储于一批机器中(内存或磁盘中)。当然,RDD肯定不会这么简单,它的功能还包括容错、集合内的数据可以并行处理等。图1是RDD类的视图。
图1
一个简单的例子
下面是一个实用scala语言编写的spark应用(摘自Apache Spark 社区https://spark.apache.org/docs/latest/quick-start.html)。
/* SimpleApp.scala */
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
object SimpleApp {
def main(args: Array[String]) {
val logFile = "YOUR_SPARK_HOME/README.md" // Should be some file on your system
val conf = new SparkConf().setAppName("Simple Application") //设置程序名字
val sc = new SparkContext(conf)
val logData = sc.textFile(logFile, 2).cache() //加载文件为RDD,并缓存
val numAs = logData.filter(line => line.contains("a")).count()//包含a的行数
val numBs = logData.filter(line => line.contains("b")).count()//包含b的行数
println("Lines with a: %s, Lines with b: %s".format(numAs, numBs))
}
}
这个程序只是简单的对输入文件README.md包含'a'和'b'的行分别计数。当然如果你想运行这个程序,需要把YOUR_SPARK_HOME替换为Spark的安装目录。程序中定义了一个RDD:logData,并调用cache,把RDD数据缓存在内存中,这样能防止重复加载文件。filter是RDD提供的一种操作,它能过滤出符合条件的数据,count是RDD提供的另一个操作,它能返回RDD数据集中的记录条数。
RDD操作类型
上述例子介绍了两种RDD的操作:filter与count;事实上,RDD还提供了许多操作方法,如map,groupByKey,reduce等操作。RDD的操作类型分为两类,转换(transformations),它将根据原有的RDD创建一个新的RDD;行动(actions),对RDD操作后把结果返回给driver。例如,map是一个转换,它把数据集中的每个元素经过一个方法处理后返回一个新的RDD;而reduce则是一个action,它收集RDD的所有数据后经过一些方法的处理,最后把结果返回给driver。
RDD的所有转换操作都是lazy模式,即Spark不会立刻计算结果,而只是简单的记住所有对数据集的转换操作。这些转换只有遇到action操作的时候才会开始计算。这样的设计使得Spark更加的高效,例如,对一个输入数据做一次map操作后进行reduce操作,只有reduce的结果返回给driver,而不是把数据量更大的map操作后的数据集传递给driver。
下面分别是transformations和action类型的操作。
Transformations类型的操作
Action类型的操作
更多RDD的操作描述和编程方法请参考社区文档:https://spark.apache.org/docs/latest/programming-guide.html。
RDD底层实现原理
RDD是一个分布式数据集,顾名思义,其数据应该分部存储于多台机器上。事实上,每个RDD的数据都以Block的形式存储于多台机器上,下图是Spark的RDD存储架构图,其中每个Executor会启动一个BlockManagerSlave,并管理一部分Block;而Block的元数据由Driver节点的BlockManagerMaster保存。BlockManagerSlave生成Block后向BlockManagerMaster注册该Block,BlockManagerMaster管理RDD与Block的关系,当RDD不再需要存储的时候,将向BlockManagerSlave发送指令删除相应的Block。
图2 RDD存储原理
RDD cache的原理
RDD的转换过程中,并不是每个RDD都会存储,如果某个RDD会被重复使用,或者计算其代价很高,那么可以通过显示调用RDD提供的cache()方法,把该RDD存储下来。那RDD的cache是如何实现的呢?
RDD中提供的cache()方法只是简单的把该RDD放到cache列表中。当RDD的iterator被调用时,通过CacheManager把RDD计算出来,并存储到BlockManager中,下次获取该RDD的数据时便可直接通过CacheManager从BlockManager读出。
RDD dependency与DAG
RDD提供了许多转换操作,每个转换操作都会生成新的RDD,这是新的RDD便依赖于原有的RDD,这种RDD之间的依赖关系最终形成了DAG(Directed Acyclic Graph)。
RDD之间的依赖关系分为两种,分别是NarrowDependency与ShuffleDependency,其中ShuffleDependency为子RDD的每个Partition都依赖于父RDD的所有Partition,而NarrowDependency则只依赖一个或部分的Partition。下图的groupBy与join操作是ShuffleDependency,map和union是NarrowDependency。
图3 RDD dependency
RDD partitioner与并行度
每个RDD都有Partitioner属性,它决定了该RDD如何分区,当然Partition的个数还将决定每个Stage的Task个数。当前Spark需要应用设置Stage的并行Task个数(配置项为:spark.default.parallelism),在未设置的情况下,子RDD会根据父RDD的Partition决定,如map操作下子RDD的Partition与父Partition完全一致,Union操作时子RDD的Partition个数为父Partition个数之和。
如何设置spark.default.parallelism对用户是一个挑战,它会很大程度上决定Spark程序的性能。
RDD原理与详解的更多相关文章
- MapReduce工作原理图文详解 (炼数成金)
MapReduce工作原理图文详解 1.Map-Reduce 工作机制剖析图: 1.首先,第一步,我们先编写好我们的map-reduce程序,然后在一个client 节点里面进行提交.(一般来说可以在 ...
- MapReduce 1工作原理图文详解
MapReduce工作原理图文详解 一 MapReduce程序执行流程 程序执行流程图如下: 流程分析:1.在客户端启动一个作业.2.向JobTracker请求一个Job ID.3.将运行作业所需要的 ...
- HashMap实现原理分析(详解)
1. HashMap的数据结构 http://blog.csdn.net/gaopu12345/article/details/50831631 ??看一下 数据结构中有数组和链表来实现对数据的存 ...
- [GO语言的并发之道] Goroutine调度原理&Channel详解
并发(并行),一直以来都是一个编程语言里的核心主题之一,也是被开发者关注最多的话题:Go语言作为一个出道以来就自带 『高并发』光环的富二代编程语言,它的并发(并行)编程肯定是值得开发者去探究的,而Go ...
- iOS---NSAutoreleasePool自动释放原理及详解
前言:当您向一个对象发送一个autorelease消息时,Cocoa就会将该对象的一个引用放入到最新的自动释放池.它仍然是个正当的对象,因此自动释放池 定义的作用域内的其它对象可以向它发送消息.当程序 ...
- MapReduce工作原理图文详解
目录:1.MapReduce作业运行流程2.Map.Reduce任务中Shuffle和排序的过程 1.MapReduce作业运行流程 流程示意图: 流程分析: 1.在客户端启动一个作业. 2.向Job ...
- python描述符(descriptor)、属性(property)、函数(类)装饰器(decorator )原理实例详解
1.前言 Python的描述符是接触到Python核心编程中一个比较难以理解的内容,自己在学习的过程中也遇到过很多的疑惑,通过google和阅读源码,现将自己的理解和心得记录下来,也为正在为了该问题 ...
- LVS-DR工作原理图文详解
为了阐述方便,我根据官方原理图另外制作了一幅图,如下图所示:VS/DR的体系结构: 我将结合这幅原理图及具体的实例来讲解一下LVS-DR的原理,包括数据包.数据帧的走向和转换过程. 官方的原理说明:D ...
- React Native 入门到原理(详解)
抛砖引玉(帮你更好的去理解怎么产生的 能做什么) 砖一.动态配置 由于 AppStore 审核周期的限制,如何动态的更改 app 成为了永恒的话题.无论采用何种方式,我们的流程总是可以归结为以下三部曲 ...
随机推荐
- 微擎系统BUG漏洞解决方法汇总(原创)
微擎微赞系统BUG漏洞解决方法汇总 弄了微擎系统来玩玩,发觉这个系统BUG还不少,阿里云的提醒都一大堆,主要是没有针对SQL注入做预防,处理的办法基本都是用转义函数. 汇总: 1. 漏洞名称: 微擎任 ...
- Message Queue中的推与拉(转)
Message Queue的设计和实现(7)http://mp.weixin.qq.com/s/zQdDBAHu1UgJJzxH2eCHgQ 数据发送中的推与拉. 当MQ要把数据给消费者的时候,就涉及 ...
- 五十九 数据库访问 使用MySQL
MySQL是Web世界中使用最广泛的数据库服务器.SQLite的特点是轻量级.可嵌入,但不能承受高并发访问,适合桌面和移动应用.而MySQL是为服务器端设计的数据库,能承受高并发访问,同时占用的内存也 ...
- php 正则验证字符串是否为数字
PHP 正则验证字符串是否为数字 方法一: php中利用正则表达式验证字符串是否为数字一件非常容易的事情,最主要的是如何写好正则表达式以及掌握正则表达式的写法,在此利用正则表达式的方式来列举一下判断数 ...
- POJ 2777 Count Color(线段树 + 染色问题)
传送门:Count Color Description Chosen Problem Solving and Program design as an optional course, you are ...
- 经典算法-最长公共子序列(LCS)与最长公共子串(DP)
public static int lcs(String str1, String str2) { int len1 = str1.length(); int len2 = str2.length() ...
- 0821Servlet基础
什么是servlet jsp页面的前身是servlet, 但是servlet和jsp是两个不同概念 servlet是运行在服务器端的一段程序, 是可以直接运行一段java后台代码 ...
- 【BZOJ 1901】【ZJU 2112】Dynamic Rankings
http://www.lydsy.com/JudgeOnline/problem.php?id=1901 重新用整体二分写了一下. 整体二分的思想详见论文. 貌似带修区间k大和静态区间k大都是\(O( ...
- 【后缀自动机】hihocoder1445 后缀自动机二·重复旋律5
解题方法提示 小Hi:本周的题目其实就是给定一个字符串S,要求出S的所有不同子串的数目.小Ho你知道如何快速求解么? 小Ho:我们最近在讨论后缀自动机,所以肯定是和后缀自动机有关!根据上周学习的SAM ...
- bzoj 4428: [Nwerc2015]Debugging调试
4428: [Nwerc2015]Debugging调试 Description Your fancy debugger will not help you in this matter. There ...