这题有离线和在线两种做法。

    离线:将查询区间按左端点排序,预处理出所有数下一次的出现位置,一开始将所有第一次出现的数a[i]++,之后当扫到这个数的时候a[next[i]]++,相当于差分,给之后的位置答案+1,因为查询区间左端点排序了,所以再也查不到当前点,这个数对答案有贡献的区间只有右端点在这个数下一次出现的位置右边的区间,当扫到查询区间左端点时当前答案为sum(r)-sum(l-1)。

#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
#include<map>
#define ll long long
using namespace std;
const int maxn=,inf=1e9;
struct poi{int l,r,pos;}q[maxn];
int n,m,x,y,z,tot,N;
int tree[maxn],a[maxn],b[maxn],ans[maxn],next[maxn],pre[maxn];
bool v[maxn];
inline void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
inline bool cmp(poi a,poi b){return a.l<b.l;}
inline int lowbit(int x){return x&-x;};
inline void add(int x){for(;x<=n;x+=lowbit(x))tree[x]++;}
inline int query(int x){int sum=;for(;x;x-=lowbit(x))sum+=tree[x];return sum;}
int main()
{
read(n);
for(int i=;i<=n;i++)read(a[i]),b[i]=a[i];N=n;
sort(b+,b++N);N=unique(b+,b++N)-b-;
for(int i=;i<=n;i++)a[i]=lower_bound(b+,b++N,a[i])-b;
for(int i=n;i;i--)next[i]=pre[a[i]],pre[a[i]]=i;
for(int i=;i<=n;i++)
if(!v[a[i]])add(i),v[a[i]]=;
read(m);
for(int i=;i<=m;i++)
{
read(q[i].l);read(q[i].r);
q[i].l--;q[i].pos=i;
}
sort(q+,q++m,cmp);
for(int i=,j=;i<=n&&j<=m;i++)
{
if(next[i])add(next[i]);
while(j<=m)
{
if(q[j].l!=i)break;
ans[q[j].pos]=query(q[j].r)-query(q[j].l);
j++;
}
}
for(int i=;i<=m;i++)printf("%d\n",ans[i]);
return ;
}

    在线:预处理出所有数上一次出现的位置,把问题转化成查询区间里有多少数last[i]<l,这显然可以用主席树了

#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
#include<map>
#define ll long long
using namespace std;
const int maxn=,inf=1e9;
struct poi{int sum,lt,rt;}tree[maxn*];
int n,m,l,r,sz,N;
int root[maxn],pre[maxn],last[maxn],a[maxn],b[maxn];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
void update(int &x,int l,int r,int cx)
{
tree[++sz]=tree[x];tree[sz].sum++;x=sz;
if(l==r)return;
int mid=(l+r)>>;
if(cx<=mid)update(tree[x].lt,l,mid,cx);
else update(tree[x].rt,mid+,r,cx);
}
int query(int x,int y,int l,int r,int cl,int cr)
{
if(cl<=l&&r<=cr)return tree[y].sum-tree[x].sum;
int mid=(l+r)>>,ret=;
if(cl<=mid)ret+=query(tree[x].lt,tree[y].lt,l,mid,cl,cr);
if(cr>mid)ret+=query(tree[x].rt,tree[y].rt,mid+,r,cl,cr);
return ret;
}
int main()
{
read(n);
for(int i=;i<=n;i++)read(a[i]),b[i]=a[i];N=n;
sort(b+,b++N);N=unique(b+,b++N)-b-;
for(int i=;i<=n;i++)a[i]=lower_bound(b+,b++N,a[i])-b;
for(int i=;i<=n;i++)pre[i]=last[a[i]],last[a[i]]=i;
for(int i=;i<=n;i++)update(root[i]=root[i-],,n,pre[i]);
read(m);
for(int i=;i<=m;i++)
{
read(l);read(r);
printf("%d\n",query(root[l-],root[r],,n,,l-));
}
}

bzoj1878: [SDOI2009]HH的项链(主席树/离线+BIT)的更多相关文章

  1. [bzoj1878][SDOI2009]HH的项链_树状数组

    HH的项链 bzoj-1878 SDOI-2009 题目大意:给定一个n个数的序列,m次查询.查询区间数的种类个数. 注释:$1\le n \le 5\cdot 10^4$,$1\le m\le 2\ ...

  2. [BZOJ1878][SDOI2009] HH的项链 (树状数组)

    link 一道简单题. 不用可持久化. 对于统计颜色个数,可以看与其颜色一样的前一个位置. 设$las(i)$表示其与$i$颜色相等的上一个位置. 则对于二元组$(l,r)$,其答案为$\sum_{i ...

  3. BZOJ1878 SDOI2009 HH的项链 【莫队】

    BZOJ1878 SDOI2009 HH的项链 Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的 ...

  4. BZOJ1878: [SDOI2009]HH的项链 (离线查询+树状数组)

    1878: [SDOI2009]HH的项链 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1878 Description: HH有一串由 ...

  5. bzoj千题计划181:bzoj1878: [SDOI2009]HH的项链

    http://www.lydsy.com/JudgeOnline/problem.php?id=1878 之前用莫队做的,现在用树状数组 把每种数的第一个出现位置在树状数组中+1 nxt[i] 记录i ...

  6. BZOJ1878: [SDOI2009]HH的项链[树状数组+离线 | 主席树]

    题意: 询问区间不同种类颜色数 [2016-11-15] 离线好厉害 对于每一个区间询问,一个数只考虑一次,那么考虑他最后出现的一次 将询问按r排序 从1到n扫描,用树状数组维护一个位置应不应该考虑( ...

  7. BZOJ1878: [SDOI2009]HH的项链[树状数组 离线]

    1878: [SDOI2009]HH的项链 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3486  Solved: 1738[Submit][Statu ...

  8. BZOJ1878 [SDOI2009] HH的项链 [莫队,卡常]

    BZOJ传送门,洛谷传送门 HH的项链 Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一 段贝壳,思考它们所表达的含义. ...

  9. [bzoj1878][SDOI2009]HH的项链_莫队

    HH 的项链 bzoj-1878 SDOI-2009 题目大意:给定一个n个数的序列.m次询问,每次询问一段区间内数的种类数. 注释:$1\le n\le 5\cdot 10^4$,$1\le m\l ...

随机推荐

  1. python基础之变量和简单数据类型

    1.1 变量的命名和使用规范 变量名可以包含数字.字母.下划线,但是不能以数字开头. 变量名不能包含空格,可使用下划线来分割其中的单词. 不要将Python关键字和函数名用作变量名. 变量名应既简短又 ...

  2. C++11 TypeList 妙用

    源码展示: #include <iostream> using namespace std; template <typename ... Args> struct typel ...

  3. 【python 3.6】从网站抓图并存放到本地路径

    #!/usr/bin/python # -*- coding: UTF-8 -*- _author_ = 'BH8ANK' import urllib.request import re import ...

  4. 关于excle导数据的一些代码笔记

    package com.bonc.util; import java.io.File; import java.io.FileInputStream; import java.io.FileOutpu ...

  5. C++复合类型(结构,共用体,枚举)

    •结构是用户定义的类型,而结构的声明定义了这种类型的数据属性. 一.关键字struct声明:   定义了一种新类型 struct inflatable{ char name[20];//结构成员 fl ...

  6. 菜鸟之路——机器学习之决策树个人理解及Python实现

    最近开始学习机器学习,以下会记录我学习中遇到的问题以及我个人的理解 决策树算法,网上很多介绍,在这不复制粘贴.下面解释几个关键词就好. 信息熵(entropy):就是信息不确定性的多少 H(x)=-Σ ...

  7. BZOJ 4176 Lucas的数论 莫比乌斯反演+杜教筛

    题意概述:求,n<=10^9,其中d(n)表示n的约数个数. 分析: 首先想要快速计算上面的柿子就要先把d(ij)表示出来,有个神奇的结论: 证明:当且仅当a,b没有相同的质因数的时候我们统计其 ...

  8. Easy Summation

    Description You are encountered with a traditional problem concerning the sums of powers. Given two ...

  9. 第二次作业(1001.A+B Format (20))

    代码文件及题目描写已放至此 一开始看题目的时候有点没看懂,要求把数分组是什么意思.如果只是单纯的a+b的话是不可能的,所以关于这一点犹豫了很久.本来以为是指把a,b,以及它们的和c各建一个数组,但只输 ...

  10. java — 重载和覆盖

    重载(overload):对于类的方法,方法名相同,参数列表不同的方法之间构成了重载关系. 参数列表:参数的类型.参数的个数.参数的顺序. 子类从父类继承来的方法也可以发生重载. 如果多个方法有相同的 ...