这题有离线和在线两种做法。

    离线:将查询区间按左端点排序,预处理出所有数下一次的出现位置,一开始将所有第一次出现的数a[i]++,之后当扫到这个数的时候a[next[i]]++,相当于差分,给之后的位置答案+1,因为查询区间左端点排序了,所以再也查不到当前点,这个数对答案有贡献的区间只有右端点在这个数下一次出现的位置右边的区间,当扫到查询区间左端点时当前答案为sum(r)-sum(l-1)。

#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
#include<map>
#define ll long long
using namespace std;
const int maxn=,inf=1e9;
struct poi{int l,r,pos;}q[maxn];
int n,m,x,y,z,tot,N;
int tree[maxn],a[maxn],b[maxn],ans[maxn],next[maxn],pre[maxn];
bool v[maxn];
inline void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
inline bool cmp(poi a,poi b){return a.l<b.l;}
inline int lowbit(int x){return x&-x;};
inline void add(int x){for(;x<=n;x+=lowbit(x))tree[x]++;}
inline int query(int x){int sum=;for(;x;x-=lowbit(x))sum+=tree[x];return sum;}
int main()
{
read(n);
for(int i=;i<=n;i++)read(a[i]),b[i]=a[i];N=n;
sort(b+,b++N);N=unique(b+,b++N)-b-;
for(int i=;i<=n;i++)a[i]=lower_bound(b+,b++N,a[i])-b;
for(int i=n;i;i--)next[i]=pre[a[i]],pre[a[i]]=i;
for(int i=;i<=n;i++)
if(!v[a[i]])add(i),v[a[i]]=;
read(m);
for(int i=;i<=m;i++)
{
read(q[i].l);read(q[i].r);
q[i].l--;q[i].pos=i;
}
sort(q+,q++m,cmp);
for(int i=,j=;i<=n&&j<=m;i++)
{
if(next[i])add(next[i]);
while(j<=m)
{
if(q[j].l!=i)break;
ans[q[j].pos]=query(q[j].r)-query(q[j].l);
j++;
}
}
for(int i=;i<=m;i++)printf("%d\n",ans[i]);
return ;
}

    在线:预处理出所有数上一次出现的位置,把问题转化成查询区间里有多少数last[i]<l,这显然可以用主席树了

#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
#include<map>
#define ll long long
using namespace std;
const int maxn=,inf=1e9;
struct poi{int sum,lt,rt;}tree[maxn*];
int n,m,l,r,sz,N;
int root[maxn],pre[maxn],last[maxn],a[maxn],b[maxn];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
void update(int &x,int l,int r,int cx)
{
tree[++sz]=tree[x];tree[sz].sum++;x=sz;
if(l==r)return;
int mid=(l+r)>>;
if(cx<=mid)update(tree[x].lt,l,mid,cx);
else update(tree[x].rt,mid+,r,cx);
}
int query(int x,int y,int l,int r,int cl,int cr)
{
if(cl<=l&&r<=cr)return tree[y].sum-tree[x].sum;
int mid=(l+r)>>,ret=;
if(cl<=mid)ret+=query(tree[x].lt,tree[y].lt,l,mid,cl,cr);
if(cr>mid)ret+=query(tree[x].rt,tree[y].rt,mid+,r,cl,cr);
return ret;
}
int main()
{
read(n);
for(int i=;i<=n;i++)read(a[i]),b[i]=a[i];N=n;
sort(b+,b++N);N=unique(b+,b++N)-b-;
for(int i=;i<=n;i++)a[i]=lower_bound(b+,b++N,a[i])-b;
for(int i=;i<=n;i++)pre[i]=last[a[i]],last[a[i]]=i;
for(int i=;i<=n;i++)update(root[i]=root[i-],,n,pre[i]);
read(m);
for(int i=;i<=m;i++)
{
read(l);read(r);
printf("%d\n",query(root[l-],root[r],,n,,l-));
}
}

bzoj1878: [SDOI2009]HH的项链(主席树/离线+BIT)的更多相关文章

  1. [bzoj1878][SDOI2009]HH的项链_树状数组

    HH的项链 bzoj-1878 SDOI-2009 题目大意:给定一个n个数的序列,m次查询.查询区间数的种类个数. 注释:$1\le n \le 5\cdot 10^4$,$1\le m\le 2\ ...

  2. [BZOJ1878][SDOI2009] HH的项链 (树状数组)

    link 一道简单题. 不用可持久化. 对于统计颜色个数,可以看与其颜色一样的前一个位置. 设$las(i)$表示其与$i$颜色相等的上一个位置. 则对于二元组$(l,r)$,其答案为$\sum_{i ...

  3. BZOJ1878 SDOI2009 HH的项链 【莫队】

    BZOJ1878 SDOI2009 HH的项链 Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一段贝壳,思考它们所表达的 ...

  4. BZOJ1878: [SDOI2009]HH的项链 (离线查询+树状数组)

    1878: [SDOI2009]HH的项链 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1878 Description: HH有一串由 ...

  5. bzoj千题计划181:bzoj1878: [SDOI2009]HH的项链

    http://www.lydsy.com/JudgeOnline/problem.php?id=1878 之前用莫队做的,现在用树状数组 把每种数的第一个出现位置在树状数组中+1 nxt[i] 记录i ...

  6. BZOJ1878: [SDOI2009]HH的项链[树状数组+离线 | 主席树]

    题意: 询问区间不同种类颜色数 [2016-11-15] 离线好厉害 对于每一个区间询问,一个数只考虑一次,那么考虑他最后出现的一次 将询问按r排序 从1到n扫描,用树状数组维护一个位置应不应该考虑( ...

  7. BZOJ1878: [SDOI2009]HH的项链[树状数组 离线]

    1878: [SDOI2009]HH的项链 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3486  Solved: 1738[Submit][Statu ...

  8. BZOJ1878 [SDOI2009] HH的项链 [莫队,卡常]

    BZOJ传送门,洛谷传送门 HH的项链 Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一 段贝壳,思考它们所表达的含义. ...

  9. [bzoj1878][SDOI2009]HH的项链_莫队

    HH 的项链 bzoj-1878 SDOI-2009 题目大意:给定一个n个数的序列.m次询问,每次询问一段区间内数的种类数. 注释:$1\le n\le 5\cdot 10^4$,$1\le m\l ...

随机推荐

  1. 【JAVA】关于java中 类.class.getResource("/").getPath()获取路径有空格的问题

    写了一个web工程,在本地测试正确,但是部署到服务器上就出现错误.原因是读取不到配置文件. 后来从打印出来的文件路径中发现是用Java的class.getResource("/") ...

  2. 莱布尼兹三角形(C++)

    [问题描述] 如下图所示的三角形,请编程输出图中排在第 n 行从左边数第 m 个位置上的数. [代码展示] # include<iostream># include<cstdio&g ...

  3. HDU 4300 Clairewd’s message (next函数的应用)

    题意:给你一个明文对密文的字母表,在给你一段截获信息,截获信息前半段是密文,后半段是明文,但不清楚它们的分界点在哪里,密文一定是完整的,明文可能是残缺的,求完整的信息串(即完整的密文+明文串). 题解 ...

  4. 使用libpcab抓包&处理包

    #include <stdio.h> #include <stdlib.h> #include <strings.h> #include <string.h& ...

  5. 20145214 《Java程序设计》第8周学习总结

    20145214 <Java程序设计>第8周学习总结 教材学习内容总结 日志API 使用日志的起点是Logger类,Logger类的构造函数标示为protected,不是java.util ...

  6. 让我们一起来做最漂亮的Android界面吧!

    让我们一起来做最漂亮的Android界面吧! AndroidiOS产品设计 摘要:如何为Android设备量身定制以打造出最为完美的应用?这是让诸多开发者很是头疼的问题.不同于iOS,Android设 ...

  7. 对Objective-C中runtime的理解

    Objective-C是面向runtime(运行时)的语言,在应用程序运行的时候来决定函数内部实现什么以及做出其它决定的语言.程序员可以在程序运行时创建,检 查,修改类,对象和它们的方法,Object ...

  8. catalan卡塔兰数

    令h(0)=1,h(1)=1,卡塔兰数数满足递归式:h(n)= h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)h(0) (其中n>=2),这是n阶递推关系;还可 ...

  9. 一起写一个Android图片轮播控件

    注:本文提到的Android轮播控件Demo地址: Android图片轮播控件 1. 轮播控件的组成部分 我们以知乎日报Android客户端的轮播控件为例,分析一下轮播控件的主要组成: 首先我们要有用 ...

  10. 团队作业7——第二次项目冲刺(Beta版本)-第一篇

    1.当天站立式会议照片: 2.工作分工: 团队成员 分工 郭达22120 项目整合,后台代码 刘德培44060 数据库模块后台连接 石浩洋22061 前台界面优化 曾繁钦22056 前台界面优化.测试 ...