【BZOJ 3811】玛里苟斯 大力观察+期望概率dp+线性基
大力观察:I.从输出精准位数的约束来观察,一定会有猫腻,然后仔细想一想,就会发现输出的时候小数点后面不是.5就是没有 II.从最后答案小于2^63可以看出当k大于等于3的时候就可以直接搜索了
期望概率dp:对于k=1的时候,把所有存在的位乘0.5就行了,对于k=2的时候就可以用类似推反演的方法(转换枚举顺序之类的)退出来一个式子,然后你只需要求个概率(很好推,也很好求)就可以啦
线性基:搜索之前还有dp之前预处理用的(只是构造一下)
然而我的做法却是,先求出线性基,再用期望概率dp(类似OSU!那种).所以呢,我先被卡了几次精,后来有了zyf的提示,我才把double换成unsigned long long.之后又是一直wa,然后我发现,对于线性基,即使进行了向上消的操作(这个操作还不是很熟额),每一位也会有多个基为1.发现自己十分native......之后就懵逼了......又经过思考我把所有存在的位出现的概率都看作是0.5,并且相互独立,然后得到了76分,十分开心,我以为找到了正确的方向......结果最后发现,位与位之间的概率并不独立......但是这个东西在k=1的时候显然没用影响,在k>1的时候会有影响,但是k=2的时候,可以从正解的式子看出,造成的影响可以在你合并了所有在基上分布相同的位之后被消除,然而k>2的时候就复杂得多(至少我没想出来我的dp怎么继续做......)......所以最后还是特判了k>2的点用搜索跑过了......
从一开始我就由于没有观察题目性质和对线性基的误导把思路放到神奇的期望概率dp上,最后卡了很久,所以说我对线性基的理解和画柿子的思路以及对期望概率里样本空间的理解(或者说对独立事件的理解)还是很native(当然还有大力观察的能力)
#include <cstdio>
#include <cstring>
#include <algorithm>
typedef unsigned long long LL;
char xB[(<<)+],*xS=xB,*xT=xB;
#define gtc (xS==xT&&(xT=(xS=xB)+fread(xB,1,1<<15,stdin),xS==xT)?0:*xS++)
inline void read(int &x){
register char ch=gtc;
for(x=;ch<''||ch>'';ch=gtc);
for(;ch>=''&&ch<='';x=(x<<)+(x<<)+ch-'',ch=gtc);
}
inline void Read(LL &x){
register char ch=gtc;
for(x=;ch<''||ch>'';ch=gtc);
for(;ch>=''&&ch<='';x=(x<<)+(x<<)+ch-'',ch=gtc);
}
int n,k,m,sum,cnt;
LL x[],c[][],pf[],gay[],temp,st[],get,tot,val[];
bool die[];
#define bin(a,b) (((a)>>(b))&1)
inline LL pick(LL key){
LL ret=key;
for(int i=;i<k;++i)ret*=key;
return ret;
}
inline void dfs(int pos,LL have){
if(pos==m+)return void(tot+=pick(have));
dfs(pos+,have),dfs(pos+,have^val[pos]);
}
int main(){
register int i,j;int l;
for(read(n),read(k),i=;i<=n;++i){
Read(temp);
for(j=;j>=;--j){
if(!bin(temp,j))continue;
if(gay[j])temp^=gay[j];
else{gay[j]=temp,++m;break;}
}
}
for(i=;i>=;--i){
if(!gay[i])continue;
for(j=i+;j<=;++j)
if(bin(gay[j],i))
gay[j]^=gay[i];
}
for(i=;i<=;++i)
for(j=i;j<=;++j)
if(bin(gay[j],i))
st[i]|=((LL))<<j;
for(i=;i<=;++i)
if(gay[i]==&&st[i])++sum;
if(k>&&sum&&m<){
for(i=;i<=;++i)
if(gay[i])
val[++cnt]=gay[i];
dfs(,),tot>>=m-;
long long tmp=tot>>;
if(tot&)printf("%lld",tmp),puts(".5");
else printf("%lld\n",tmp);
return ;
}
c[][]=;
for(i=;i<=k;++i){
c[i][]=;
for(j=;j<=i;++j)
c[i][j]=c[i-][j-]+c[i-][j];
}
x[]=;
for(i=;i<=;++i){
temp=;
for(j=;j<=;++j)
if(bin(gay[j],i)){temp=;break;}
if(!temp)continue;
temp=((LL))<<i;
pf[]=;
for(j=;j<=k;++j)pf[j]=pf[j-]*temp;
for(j=k;j>;--j)
for(l=;l<=j;++l)
if(x[j-l]&)
x[j]+=x[j-l]*((c[j][l]&)?(pf[l]>>)*c[j][l]:(c[j][l]>>)*pf[l]);
else x[j]+=(x[j-l]>>)*c[j][l]*pf[l];
}
long long tmp=x[k]>>;
if(x[k]&)printf("%lld",tmp),puts(".5");
else printf("%lld\n",tmp);
return ;
}
【BZOJ 3811】玛里苟斯 大力观察+期望概率dp+线性基的更多相关文章
- 【BZOJ 3652】大新闻 数位dp+期望概率dp
并不难,只是和期望概率dp结合了一下.稍作推断就可以发现加密与不加密是两个互相独立的问题,这个时候我们分开算就好了.对于加密,我们按位统计和就好了;对于不加密,我们先假设所有数都找到了他能找到的最好的 ...
- HDU 3853 期望概率DP
期望概率DP简单题 从[1,1]点走到[r,c]点,每走一步的代价为2 给出每一个点走相邻位置的概率,共3中方向,不动: [x,y]->[x][y]=p[x][y][0] , 右移:[x][y ...
- 【NOIP模拟赛】黑红树 期望概率dp
这是一道比较水的期望概率dp但是考场想歪了.......我们可以发现奇数一定是不能掉下来的,因为若奇数掉下来那么上一次偶数一定不会好好待着,那么我们考虑,一个点掉下来一定是有h/2-1个红(黑),h/ ...
- BZOJ1415: [Noi2005]聪聪和可可 最短路 期望概率dp
首先这道题让我回忆了一下最短路算法,所以我在此做一个总结: 带权: Floyed:O(n3) SPFA:O(n+m),这是平均复杂度实际上为O(玄学) Dijkstra:O(n+2m),堆优化以后 因 ...
- 期望概率DP
期望概率DP 1419: Red is good Description 桌面上有\(R\)张红牌和\(B\)张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付 ...
- bzoj 3811: 玛里苟斯【线性基+期望dp】
这个输出可是有点恶心啊--WA*inf,最后抄了别人的输出方法orz 还有注意会爆long long,要开unsigned long long 对于k==1,单独考虑每一位i,如果这一位为1则有0.5 ...
- 【BZOJ 3925】[Zjoi2015]地震后的幻想乡 期望概率dp+状态压缩+图论知识+组合数学
神™题........ 这道题的提示......(用本苣蒻并不会的积分积出来的)并没有 没有什么卵用 ,所以你发现没有那个东西并不会 不影响你做题 ,然后你就可以推断出来你要求的是我们最晚挑到第几大的 ...
- bzoj 3811: 玛里苟斯
3811: 玛里苟斯 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 190 Solved: 95[Submit][Status][Discuss] ...
- BZOJ.3811.玛里苟斯(线性基)
BZOJ UOJ 感觉网上大部分题解对我这种数学基础差的人来说十分不友好...(虽然理解后也觉得没有那么难) 结合两篇写的比较好的详细写一写.如果有错要指出啊QAQ https://blog.csdn ...
随机推荐
- WEB安全--高级sql注入,爆错注入,布尔盲注,时间盲注
1.爆错注入 什么情况想能使用报错注入------------页面返回连接错误信息 常用函数 updatexml()if...floorextractvalue updatexml(,concat() ...
- Selenium(Python) ddt读取Excel文件数据驱动
首先, 引入xlrd模块: ExcelDDT.py: import unittestfrom time import sleep from ddt import ddt, datafrom selen ...
- 第一篇 HTML基础
浏览网页,就是上网,上网的本质就是下载内容. 浏览器是个解释器,用来执行HTML.css.JS代码的. HTML,CSS, JavaScript 号称网络三剑客. 1. 浏览器发送一个域名给服务端 2 ...
- SpringMVC+mybatis+maven+Ehcache缓存实现
所谓缓存,就是将程序或系统经常要调用的对象存在内存中,以便其使用时可以快速调用,不必再去创建新的重复的实例.这样做可以减少系统开销,提高系统效率. 缓存主要可分为二大类: 一.通过文件缓存,顾名思义文 ...
- 深入理解java虚拟机学习笔记(一)
第二章 Java内存区域与内存溢出异常 运行时数据区域 程序计数器(Program Counter Register) 程序计数器:当前线程所执行的字节码行号指示器.各条线程之间计数器互不影响,独立存 ...
- python中的迭代器与生成器
迭代器 迭代器的引入 假如我现在有一个列表l=['a','b','c','d','e'],我想取列表中的内容,那么有几种方式? 1.通过索引取值 ,如了l[0],l[1] 2.通过for循环取值 fo ...
- java扫描控制台输入
由于因最近练习算法的需要,加上API文档中翻译的太过模糊,做了一些小测试,算是武断的记下一些个人结论. Scanner cin = new Scanner(System.in); 对于cin.next ...
- Pandas基础教程
pandas教程 更多地可以 参考教程 安装 pip install pandas pandas的类excel操作,超级方便: import pandas as pd dates = pd.date_ ...
- 应用Response.Write实现带有进度条的多文件上传
前几天,写过一篇随笔“使用RESPONSE.WRITE实现在页面的生命周期中前后台的交互”.说是交互,实际上也主要是在ASP.NET的页面周期中 从后台利用RESPONSE.WRITE向前台即时的推送 ...
- Python的string模块化方法
Python 2.X中曾经存在过一个string模块,这个模块里面有很多操作字符串的方法,但是在Python 3.X中,这些模块化方法已经被移除了(但是string模块本身没有被移除,因为它还有其他可 ...