https://vjudge.net/problem/SPOJ-DQUERY

http://www.spoj.com/problems/DQUERY/en/

给定一列数,查询给定区间内数的种类数。

这题可以分块做:BZOJ2453:维护队列

但是我们不想分块而且垃圾SPOJ可能会卡时间同时又想练主席树,所以选择主席树。

参考:https://www.cnblogs.com/zhuanzhuruyi/p/5936713.html

这种题的主席树建法并不是权值线段树,而是正常线段树。

当我们建树过程中碰到的重复的数的时候,显然让该重复的数接近r是最好的,所以我们把前面的数删掉,放到后面。

查询的时候就是查询rt[0]~rt[r],并且查询的范围在l~r的数的个数即可。

PS:rt[0]相当于没有,范围的上限r也可以省略。

#include<stack>
#include<queue>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<algorithm>
using namespace std;
const int N=1e6+;
inline int read(){
int x=,w=;char ch=;
while(ch<''||ch>''){if(ch=='-')w=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*w;
}
struct tree{
int l,r,sum;
}tr[N*];
int n,m,rt[N],pool,in[N];
inline void insert(int y,int &x,int l,int r,int p,int v){
tr[x=++pool]=tr[y];
tr[x].sum+=v;
if(l==r)return;
int mid=(l+r)>>;
if(p<=mid)insert(tr[y].l,tr[x].l,l,mid,p,v);
else insert(tr[y].r,tr[x].r,mid+,r,p,v);
}
inline int query(int x,int l,int r,int p){
if(p<=l)return tr[x].sum;
if(r<p)return ;
int mid=(l+r)>>;
return query(tr[x].l,l,mid,p)+query(tr[x].r,mid+,r,p);
}
int main(){
n=read();
for(int i=;i<=n;i++){
int a=read(),tmp;
if(!in[a]){
insert(rt[i-],rt[i],,n,in[a]=i,);
}else{
insert(rt[i-],tmp,,n,in[a],-);
insert(tmp,rt[i],,n,in[a]=i,);
}
}
m=read();
for(int i=;i<=m;i++){
int l=read(),r=read();
printf("%d\n",query(rt[r],,n,l));
}
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

SPOJ3267/DQUERY:D-query——题解的更多相关文章

  1. SPOJ3267 D-query 离线+树状数组 在线主席树

    分析:这个题,离线的话就是水题,如果强制在线,其实和离线一个思路,然后硬上主席树就行了 离线的代码 #include <iostream> #include <stdio.h> ...

  2. [SP3267]DQUERY - D query

    题目传送门 维护一个区间内不同数的个数,最直观的想法是直接排序后用树状数组维护即可.但是我们发现n只有3e4,于是我们想到了可以拿一个$O(n\sqrt{n})$的莫队维护.关于莫队算法如果有不知道的 ...

  3. 【HDU5869】 Different GCD Subarray Query 题解 (线段树维护区间GCD)

    题目大意:求区间$[L,R]$中所有子区间产生的最大公因数的个数. ------------------------- 对于$gcd$,我们知道$gcd(a,b,c)=gcd(gcd(a,b),c)$ ...

  4. BZOJ3236:[AHOI2013]作业——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=3236 第一种做法: 建两棵主席树分别处理两个问题. 第一个问题水,第二个问题参考SPOJ3267/ ...

  5. 莫队算法学习笔记【BZOJ2038:小Z的袜子】【SPOJ3267:D-query】

    很久以前傻乎乎地看来源奇怪的资料的时候被各种曼哈顿弄晕了. 然后现在学会的是分块方法.另新创一个分块方法. 让我们考虑这样一个区间询问问题…… 它有如下的性质: 0,n个数,Q个询问. 1,它没有修改 ...

  6. SPOJ3267:D-query

    题面 SPOJ3267 Sol 给定\(N\)个正整数构成的序列,将对于指定的闭区间查询其区间内的不同的数的个数 主席树 不是权值线段树 维护位置 如果插入一个数时发现之前有过了 那么修改当前的,那个 ...

  7. 【题解】Luogu SP3267 DQUERY - D-query

    原题传送门 这题和Luogu P1972 [SDOI2009]HH的项链很像,只是数据大小有些差别,题解 我博客里对莫队的介绍 我们在排序询问时,普通是这样qaq inline bool cmp(re ...

  8. HDU3686 Traffic Real Time Query System 题解

    题目 City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, t ...

  9. 【题解】【数组】【Prefix Sums】【Codility】Genomic Range Query

    A non-empty zero-indexed string S is given. String S consists of N characters from the set of upper- ...

随机推荐

  1. join_tab计算代价

    此路不通,还是需要按照顺序进行计算

  2. 分享一个 UiPath Studio 相关的公众号

    RPA 和 UiPath 方面的资料比较少,因此我们自己创建了一个公众号,专门用于传播 UiPath 相关的知识. 会定期发布 UiPath 学习相关的信息.是目前难得的 UiPath 中文资源. 公 ...

  3. 韦大仙--python对文件操作

    文件操作: 对文件操作流程 打开文件,得到文件句柄并赋值给一个变量 通过句柄对文件进行操作 关闭文件 现有文件如下 Somehow, it seems the love I knew was alwa ...

  4. leetcode-二叉树的层次遍历(Java)

    给定一个二叉树,返回其按层次遍历的节点值. (即逐层地,从左到右访问所有节点). 例如:给定二叉树: [3,9,20,null,null,15,7], 3 / \ 9 20 / \ 15 7 返回其层 ...

  5. 垃圾收集器与内存分配策略(深入理解Java虚拟机)

    3.1 概述 垃圾收集器要解决哪些问题? 哪些内存需要回收 什么时候回收 如何回收 引用计数算法:当有一个地方引用,+1,引用失效,-1.     缺点:对象之间相互循环引用的问题. 可达性分析算法: ...

  6. [Clr via C#读书笔记]Cp8方法

    Cp8方法 构造器 作用就是初始化所有成员字段:.ctor:派生类和基类都有自己的构造函数.默认有一个无参数的构造函数,值字段初始化为0,引用字段初始化为null:可以有多个构造器: 值类型的初始化其 ...

  7. centos端口管理

    centos 6.5 ###############配置filter表防火墙############### #清除预设表filter中的所有规则链的规则iptables -F #清除预设表filter ...

  8. RNN概述-深度学习 -神经网络

    一 RNN概述    前面我们叙述了BP算法, CNN算法, 那么为什么还会有RNN呢?? 什么是RNN, 它到底有什么不同之处? RNN的主要应用领域有哪些呢?这些都是要讨论的问题. 1) BP算法 ...

  9. Ubuntu 常用软件推荐(QQ、微信、MATLAB等)及安装过程

    1. Wine QQ QQ 移植到 Linux 一直是一个比较头疼的问题,但我们日常交流.传输文件又离不开这个软件.在网上一番搜寻尝试后,发现最好的替代方案就是 Wine QQ,版本也还比较新,缺点是 ...

  10. LeetCode - 231. Power of Two - 判断一个数是否2的n次幂 - 位运算应用实例 - ( C++ )

    1.题目:原题链接 Given an integer, write a function to determine if it is a power of two. 给定一个整数,判断该整数是否是2的 ...