Sparse autoencoder implementation 稀疏自编码器实现
任务:在这个问题中,你将实现稀疏自编码器算法,并且展示它怎么发现边缘是自然图像的一个好的表示。
在文件 sparseae_exercise.zip中,我们已经提供了一些Matlab中的初始代码,你应该将你的代码写在文件中的”YOUR CODE HERE“下面。你必须完成以下文件:samplesIMAGES.m, sparseAutoencoderCost.m, computeNumericalGradient.m.在train.m中的开始代码展示了这些函数是怎样被使用的。
明确地,在这个练习中你将实现一个稀疏自编码器,用8×8的图像块,使用L-BFGS最优化算法训练的。
第一步:产生训练集合
第一步是去产生一个训练集合。为了得到一个单一的训练样例x,随机从100张图片中选取一张,然后从选择的图像中随机采样一个8×8图像块,并且将图像块转化到一个64维的向量中去产生一个训练样本
完成在samplesIMAGES.m中的代码,你的代码将会采样10000个图像块并且将它们连接成一个64×10000的矩阵。
为了保证你的实现是对的,运行train.m中的Step 1,这个应该会产生一个来自数据库的具有200个块的随机样本图表。
实现窍门:当我们运行我们实现的sampleImages()时,花费时间会低于5秒。如果你的实现超过30秒,可能是因为你在每次选择一个随机图片时,意外地复制了整个512×512图像。通过复制一个512×512像素的图像10000次,这个可能会是你的实现很低效。要保证每次你想要切出一个8×8的图像块时,并没有复制了整幅图像。
第二步:稀疏自编码对象
执行代码去计算稀疏自编码代价函数Jsparse(W,b)以及Jsparse 对于不同参数的导数,使用sigmoid函数作为激活函数,
完成在sparseAutoencoderCost.m中的代码。
稀疏自编码器具有参数:矩阵,向量,。然而,为了方便表述,我们将会将这些参数都放在一个很长的参数向量θ中,具有s1s2 + s2s3 + s2 + s3个参数。转化(W(1),W(2),b(1),b(2))和θ的代码已经被放在启示代码中了。
实现技巧:对象Jsparse(W,b) 包含三项,the squared error term平方误差项,the weight decay term权重衰减项和the sparsity penalty稀疏惩罚项。你可以以自己想用的方式来实现这个,但是为了便于调试,你可以只首先计算平方误差项的代价函数和导数计算(反向传播),这个相当于设置λ=ß=0;并且在下一章中实现梯度检验算法要首先验证这个代码是正确的
Sparse autoencoder implementation 稀疏自编码器实现的更多相关文章
- DL二(稀疏自编码器 Sparse Autoencoder)
稀疏自编码器 Sparse Autoencoder 一神经网络(Neural Networks) 1.1 基本术语 神经网络(neural networks) 激活函数(activation func ...
- Exercise:Sparse Autoencoder
斯坦福deep learning教程中的自稀疏编码器的练习,主要是参考了 http://www.cnblogs.com/tornadomeet/archive/2013/03/20/2970724 ...
- Deep Learning 1_深度学习UFLDL教程:Sparse Autoencoder练习(斯坦福大学深度学习教程)
1前言 本人写技术博客的目的,其实是感觉好多东西,很长一段时间不动就会忘记了,为了加深学习记忆以及方便以后可能忘记后能很快回忆起自己曾经学过的东西. 首先,在网上找了一些资料,看见介绍说UFLDL很不 ...
- (六)6.5 Neurons Networks Implements of Sparse Autoencoder
一大波matlab代码正在靠近.- -! sparse autoencoder的一个实例练习,这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共1000 ...
- UFLDL实验报告2:Sparse Autoencoder
Sparse Autoencoder稀疏自编码器实验报告 1.Sparse Autoencoder稀疏自编码器实验描述 自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值, ...
- Deep Learning学习随记(一)稀疏自编码器
最近开始看Deep Learning,随手记点,方便以后查看. 主要参考资料是Stanford 教授 Andrew Ng 的 Deep Learning 教程讲义:http://deeplearnin ...
- 七、Sparse Autoencoder介绍
目前为止,我们已经讨论了神经网络在有监督学习中的应用.在有监督学习中,训练样本是有类别标签的.现在假设我们只有一个没有带类别标签的训练样本集合 ,其中 .自编码神经网络是一种无监督学习算法,它使用 ...
- CS229 6.5 Neurons Networks Implements of Sparse Autoencoder
sparse autoencoder的一个实例练习,这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共10000张,现在需要用sparse autoen ...
- 可视化自编码器训练结果&稀疏自编码器符号一览表
训练完(稀疏)自编码器,我们还想把这自编码器学习到的函数可视化出来,好弄明白它到底学到了什么.我们以在10×10图像(即n=100)上训练自编码器为例.在该自编码器中,每个隐藏单元i对如下关于输入的函 ...
随机推荐
- MDK/Keil 中,J-Link调试查看变量值总是显示<not in scope>
转载请注明出处,谢谢. MDK/Keil 中,J-Link调试查看变量值总是显示<not in scope> 原因:编译器把代码优化掉了,直接导致在仿真中变量根本没有分配内存,也就无法查看 ...
- WPF程序,运行时,结束时,要运行的操作(自动保存,检查单程序)
/// <summary> /// App.xaml 的交互逻辑 /// </summary> public partial class App : Application { ...
- Java集合——ArrayList源码详解
) ArrayList 实现了RandomAccess, Cloneable, java.io.Serializable三个标记接口,表示它自身支持快速随机访问,克隆,序列化. public clas ...
- 全国Uber优步司机奖励政策 (1月11日-1月17日)
本周已经公开奖励整的城市有:北 京.成 都.重 庆.上 海.深 圳.长 沙.佛 山.广 州.苏 州.杭 州.南 京.宁 波.青 岛.天 津.西 安.武 汉.厦 门,可按CTRL+F,搜城市名快速查找. ...
- Redis系列二 Redis数据库介绍
1.SELECT命令 通过查看配置文件可以知道Redis默认有17个库,从0-16. 默认是在0号库.选择库使用SELECT <dbid>命令.例如选择0号库 SELECT 0 2.DB ...
- nginx下pagespeed使用详解
目录 1.简介 2.安装 2.1脚本安装 查看该脚本的如何使用 使用脚本自动安装 替换以前的nginx 2.2 手动安装 先安装基本依赖 构建pagespeed 重新编译安装nginx 3.配置 3. ...
- 【JUC源码解析】AQS
简介 AQS,也即AbstractQueuedSynchronizer,抽象队列同步器,提供了一个框架,可以依赖它实现阻塞锁和相关同步器.有两种类型,独占式(Exclusive)和共享式(Share) ...
- MySQL☞sign函数
sign( )函数:判断数值的正负性,如果数值是正数,返回值是1,如果该数值是负数,返回值是-1,如果该数值是 0,返回值也是0. 格式: select sign(数值) from 表名 例子: 1. ...
- TPO-14 C2 Prepare for a career in journalism
TPO-14 C2 Prepare for a career in journalism 第 1 段 1.Listen to a conversation between a student and ...
- Ubuntu—安装网络调试工具
https://pan.baidu.com/s/1G6oHXp3SvcN6HMAMqTdqhA 1,在ubuntu的终端下,切换到网络调试工具所在的目录 $ cd 桌面/ #我的放在桌面上 2, ...