Number String

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1935    Accepted Submission(s): 931

Problem Description
The signature of a permutation is a string that is computed as follows: for each pair of consecutive elements of the permutation, write down the letter 'I' (increasing) if the second element is greater than the first one, otherwise write down the letter 'D' (decreasing). For example, the signature of the permutation {3,1,2,7,4,6,5} is "DIIDID".

Your task is as follows: You are given a string describing the signature of many possible permutations, find out how many permutations satisfy this signature.

Note: For any positive integer n, a permutation of n elements is a sequence of length n that contains each of the integers 1 through n exactly once.

 
Input
Each test case consists of a string of 1 to 1000 characters long, containing only the letters 'I', 'D' or '?', representing a permutation signature.

Each test case occupies exactly one single line, without leading or trailing spaces.

Proceed to the end of file. The '?' in these strings can be either 'I' or 'D'.

 
Output
For each test case, print the number of permutations satisfying the signature on a single line. In case the result is too large, print the remainder modulo 1000000007.
 
Sample Input
II
ID
DI
DD
?D
??
 
Sample Output
1
2
2
1
3
6

Hint

Permutation {1,2,3} has signature "II".
Permutations {1,3,2} and {2,3,1} have signature "ID".
Permutations {3,1,2} and {2,1,3} have signature "DI".
Permutation {3,2,1} has signature "DD".
"?D" can be either "ID" or "DD".
"??" gives all possible permutations of length 3.

 
Author
HONG, Qize

基础dp
 
字符串长度为n,则有(n+1)个数字组成排列。
dp[i][j]代表长度为i末位为j的符合题意的全排列总数,所以这样的排列内没有大于i的数。
显然dp[1][1]=1;
对于i>1,若对应的字符为‘I’,那么$dp[i][j]=\sum_{k=1}^{j-1}dp[i-1][k]$,这个显而易见。
若对应的字符为'D',那么$dp[i][j]=\sum_{k=j}^{i-1}dp[i-1][k]$,这个其实相当于在i位置放入j以后,把i全排列中i-1及之前的位置大于j的数字+1,构成新的排列。
那么对应的字符为“?”,则是把上两种情况综合,$dp[i][j]=\sum_{k=1}^{i-1}dp[i-1][k]$,显而易见。
 #include<cstdio>
#include<iostream>
#include<cstring>
#define clr(x) memset(x,0,sizeof(x))
#define LL long long
#define mod 1000000007
using namespace std;
LL dp[][],ans;
char s[];
int main()
{
while(scanf("%s",s)!=EOF)
{
dp[][]=;
for(int i=;i<=strlen(s)+;i++)
{
if(s[i-]=='I')
{
dp[i][]=;
for(int j=;j<=i;j++)
dp[i][j]=(dp[i][j-]+dp[i-][j-])%mod;
}
if(s[i-]=='D')
{
dp[i][i]=;
for(int j=i-;j>=;j--)
dp[i][j]=(dp[i][j+]+dp[i-][j])%mod;
}
if(s[i-]=='?')
{
dp[i][]=;
for(int j=;j<=i-;j++)
dp[i][]=(dp[i][]+dp[i-][j])%mod;
for(int j=;j<=i;j++)
dp[i][j]=dp[i][j-];
}
}
ans=;
for(int i=;i<=strlen(s)+;i++)
ans=(ans+dp[strlen(s)+][i])%mod;
printf("%lld\n",ans);
}
return ;
}

hdu 4055 Number String (基础dp)的更多相关文章

  1. hdu 4055 Number String(dp)

    Problem Description The signature of a permutation is a string that is computed as follows: for each ...

  2. HDU 4055 Number String (计数DP)

    题意:由数字1到n组成的所有排列中,问满足题目所给的n-1个字符的排列有多少个,如果第i字符是‘I’表示排列中的第i-1个数是小于第i个数的. 如果是‘D’,则反之. 析:dp[i][j] 表示前 i ...

  3. HDU 4055 Number String dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4055 Number String Time Limit: 10000/5000 MS (Java/O ...

  4. hdu 4055 Number String(有点思维的DP)

    Number String Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  5. hdu 4055 Number String

    Number String http://acm.hdu.edu.cn/showproblem.php?pid=4055 Time Limit: 10000/5000 MS (Java/Others) ...

  6. HDU 4055 Number String:前缀和优化dp【增长趋势——处理重复选数】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4055 题意: 给你一个由'I', 'D', '?'组成的字符串,长度为n,代表了一个1~n+1的排列中 ...

  7. HDU 4055 Number String(DP计数)

    题意: 给你一个含n个字符的字符串,字符为'D'时表示小于号,字符为“I”时表示大于号,字符为“?”时表示大小于都可以.比如排列 {3, 1, 2, 7, 4, 6, 5} 表示为字符串 DIIDID ...

  8. hdu 4055 Number String(递推DP)

    给一个只含‘I','D','?'三种字符的字符串,I表示当前数字大于前面的数字,D表示当前的数字小于前面一位的数字,?表示当前位既可以小于又可以大于. 问1~n的排列中有多少个满足该字符串. http ...

  9. HDU 4054 Number String

    HDU 4054 Number String 思路: 状态:dp[i][j]表示以j结尾i的排列 状态转移: 如果s[i - 1]是' I ',那么dp[i][j] = dp[i-1][j-1] + ...

随机推荐

  1. Android检测View的可见性

    Android中我们经常会用到判断View的可见行,当然有人会说View.VISIBLE就可以了,但是有时候这个真是满足不了,有时候我们为了优化,在View滚到得不可见的时候或者由于滚到只显示了部分内 ...

  2. R、Python、Scala和Java,到底该使用哪一种大数据编程语言?

    有一个大数据项目,你知道问题领域(problem domain),也知道使用什么基础设施,甚至可能已决定使用哪种框架来处理所有这些数据,但是有一个决定迟迟未能做出:我该选择哪种语言?(或者可能更有针对 ...

  3. 【HNOI】 小A的树 tree-dp

    [题目描述]给定一颗树,每个点有各自的权值,任意选取两个点,要求算出这两个点路径上所有点的and,or,xor的期望值. [数据范围]n<=10^5 首先期望可以转化为求树上所有点对的and,o ...

  4. js_判断当前页面是否有网络和网络连接超时

    2018-04-12 方法一:通过navigator.onLine属性判断,返回true为有联网状态,false为断网状态. //方法一 if(navigator.onLine) { console. ...

  5. 使用Sysmon分析宏病毒(Macros Downloader)

    样本为一个Word文件,Virustotal地址: https://www.virustotal.com/#/file/f8aede78ad92bd28f5f699b677d7d5fd362c8be8 ...

  6. mysql增删

    create table msg (id int, name varchar(10)); 插入语句 insert into msg values(1,'root'); insert into msg( ...

  7. ftrace 简介【转】

    转自:http://www.ibm.com/developerworks/cn/linux/l-cn-ftrace/index.html Trace 对于软件的维护和性能分析至关重要,ftrace 是 ...

  8. 利用keepalive+mysql replication 实现数据库的高可用

    利用keepalive+mysql replication 实现数据库的高可用 http://www.xuchanggang.cn/archives/866.html

  9. Leetcode 之Binary Tree Preorder Traversal(42)

    树的先序遍历.定义一个栈,先压入中间结点并访问,然后依次压入右.左结点并访问. vector<int> preorderTraversal(TreeNode *root) { vector ...

  10. CF1064 E - Dwarves, Hats and Extrasensory Abilities

    题意 交互题, 本来应该是在平面上进行的. 实际上换成一条直线就可以, 其实换成在平面上更复杂一些. Solution 假设\(l\)点是黑点, \(r\)处是白点, 那么就把下一个点的位置放置在\( ...