Day1

T1

  据说是原题积木大赛,但是考场上蠢了,只会写数据结构,于是写了一个线段树$+$堆$+$贪心,先选出最小的,然后区间修改,然后把左右两端区间的最小值丢进堆里,不停从堆中去最小值更新即可(模拟题)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using std::pop_heap; using std::push_heap;
using std::greater; using std::min;
#define file(a) freopen(a".in", "r", stdin); freopen(a".out", "w", stdout);
typedef long long ll; template <typename T>
inline void read(T &x) {
x = 0; char ch = getchar(); int f = 1;
while(ch < '0' || ch > '9') { if(ch == '-') f = -f; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar();
x *= f;
} const int N = 1e5 + 10, LogN = 20, Inf = 1e9 + 7;
int n, d[N];
struct Range {
int minval, site, l, r;
inline bool operator < (const Range &a) const {
return minval < a.minval;
}
inline bool operator > (const Range &a) const {
return minval > a.minval;
}
};
Range val[N << 2]; int add[N << 2];
struct Heap {
Range h[N]; int siz;
void push(Range x) { h[++siz] = x, push_heap(&h[1], &h[siz + 1], greater<Range>()); }
void pop() { pop_heap(&h[1], &h[siz + 1], greater<Range>()), --siz; }
inline bool empty() { return siz == 0; }
inline int size() { return siz; }
inline Range top() { return h[1]; }
}q;
inline void pushup(int o, int lc, int rc) {
val[o] = min(val[lc], val[rc]);
}
inline void pushdown(int o, int lc, int rc) {
if(add[o]) {
val[lc].minval += add[o], val[rc].minval += add[o];
add[lc] += add[o], add[rc] += add[o], add[o] = 0;
}
}
void build(int o = 1, int l = 1, int r = n) {
if(l == r) { val[o] = (Range){d[l], l, l, l}; return ; }
int mid = (l + r) >> 1, lc = o << 1, rc = lc | 1;
build(lc, l, mid), build(rc, mid + 1, r), pushup(o, lc, rc);
}
void modify(int ml, int mr, int k, int o = 1, int l = 1, int r = n) {
if(ml > mr) return ;
if(l >= ml && r <= mr) {
val[o].minval += k, add[o] += k;
return ;
} int mid = (l + r) >> 1, lc = o << 1, rc = lc | 1;
pushdown(o, lc, rc);
if(ml <= mid) modify(ml, mr, k, lc, l, mid);
if(mr > mid) modify(ml, mr, k, rc, mid + 1, r);
pushup(o, lc, rc);
}
Range query(int ml, int mr, int o = 1, int l = 1, int r = n) {
if(ml > mr) return (Range){Inf,0,0,0};
if(l >= ml && r <= mr) return val[o];
int mid = (l + r) >> 1, lc = o << 1, rc = lc | 1; Range val = (Range){Inf,0,0,0};
pushdown(o, lc, rc);
if(ml <= mid) val = query(ml, mr, lc, l, mid);
if(mr > mid) val = min(val, query(ml, mr, rc, mid + 1, r));
return val;
} int main () {
file("road");
read(n);
for(int i = 1; i <= n; ++i) read(d[i]);
build();
int tmpn = n, ret = 0; Range now = val[1];
now.l = 1, now.r = n; q.push(now);
while(tmpn && q.size()) {
now = q.top(), q.pop(); --tmpn;
ret += now.minval;
modify(now.l, now.r, -now.minval);
Range l = query(now.l, now.site - 1), r = query(now.site + 1, now.r);
l.l = now.l, l.r = now.site - 1, r.l = now.site + 1, r.r = now.r;
q.push(l), q.push(r);
} printf("%d\n", ret);
return 0;
}

T2

  不难发现,两个硬币系统是等价的当且仅当其中的某些硬币能被除自己以外的硬币凑出来。完全背包强制不选自己就行了。

#include <cstdio>
#include <cstring>
#include <algorithm>
using std::max; using std::sort;
#define file(a) freopen(a".in", "r", stdin); freopen(a".out", "w", stdout);
typedef long long ll; template <typename T>
inline void read(T &x) {
x = 0; char ch = getchar(); int f = 1;
while(ch < '0' || ch > '9') { if(ch == '-') f = -f; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar();
x *= f;
} const int N = 1e2 + 10, M = 2.5e4 + 10;
int t, n, a[N], f[M]; int main () {
file("money");
read(t);
while(t--) {
read(n); int ret = 0, m = 0;
for(int i = 1; i <= n; ++i) read(a[i]), m = max(m, a[i]);
memset(f, 0, sizeof f), sort(&a[1], &a[n + 1]);
for(int i = 1; i <= n; ++i) {
for(int j = a[i] + 1; j <= m; ++j)
f[j] |= f[j - a[i]];
if(!f[a[i]]) {
++ret, f[a[i]] = 1;
for(int j = a[i]; j <= m; ++j)
f[j] |= f[j - a[i]];
}
}
printf("%d\n", ret);
}
return 0;
}

T3

  显然,这种最小值最大可以二分答案,考虑如何$check$,不妨考虑树形$dp$,设$f[u]$表示在$u$的子树中选一条权值和最大的路径,对于一个子节点$v$,如果$f[v]+dis[u][v]$满足,显然可以选,然后在考虑不满足的情况,显然是选择两条路径拼接在一起,可以用$set$+二分搞(其实容易被卡常)。

#include <set>
#include <cstdio>
#include <cstring>
#include <algorithm>
using std::max; using std::min; using std::sort;
#define file(a) freopen(a".in", "r", stdin); freopen(a".out", "w", stdout);
typedef long long ll;
using std::multiset; template <typename T>
inline void read(T &x) {
x = 0; char ch = getchar(); int f = 1;
while(ch < '0' || ch > '9') { if(ch == '-') f = -f; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar();
x *= f;
} const int N = 5e4 + 10, Inf = 1e9 + 7;
int n, m, g, k;
int cnt, from[N], to[N << 1], dis[N << 1], nxt[N << 1];
int f[N], st[N]; multiset<int> s; multiset<int>::iterator it;
int l, r;
inline void addEdge(int u, int v, int w) {
to[++cnt] = v, nxt[cnt] = from[u], dis[cnt] = w, from[u] = cnt;
} void doit (int u, int fa) {
for(int i = from[u]; i; i = nxt[i])
if(to[i] != fa) doit(to[i], u);
int top = 0;
for(int i = from[u]; i; i = nxt[i]) {
int v = to[i]; if(v == fa) continue;
f[v] += dis[i];
if(f[v] >= g) ++k;
else st[++top] = f[v];
} sort(&st[1], &st[top + 1]), s.clear();
for(int i = 1; i <= top; ++i) {
it = s.lower_bound(g - st[i]);
if(it != s.end()) s.erase(it), ++k;
else s.insert(st[i]);
}
f[u] = s.size() ? *s.rbegin() : 0;
} int main () {
file("track");
read(n), read(m);
for(int i = 1, u, v, w; i < n; ++i) {
read(u), read(v), read(w), r += w;
addEdge(u, v, w), addEdge(v, u, w);
} r /= m; int ret = 0;
while(l <= r) {
g = (l + r) >> 1, k = 0;
doit(1, 0);
if(k >= m) ret = g, l = g + 1;
else r = g - 1;
} printf("%d\n", ret);
return 0;
}

NOIP2018 提高组题解的更多相关文章

  1. NOIP2018提高组题解

    D1T1:铺设道路 回忆NOIP2013D2T1 积木大赛,发现这两题唯一的区别就是一个是造山一个是填坑,而把填坑的操作反序就是造山,所以可以直接使用那道题的方法. 具体方法是,从左到右每次考虑新的一 ...

  2. 【NOIP2018】提高组题解

    [NOIP2018]提高组题解 其实就是把写过的打个包而已 道路铺设 货币系统 赛道修建 旅行 咕咕咕 咕咕咕

  3. NOIP2018提高组省一冲奖班模测训练(六)

    NOIP2018提高组省一冲奖班模测训练(六) https://www.51nod.com/Contest/ContestDescription.html#!#contestId=80 20分钟AC掉 ...

  4. NOIP2018提高组省一冲奖班模测训练(五)

    NOIP2018提高组省一冲奖班模测训练(五) http://www.51nod.com/Contest/ContestDescription.html#!#contestId=79 今天有点浪…… ...

  5. noip2010提高组题解

    NOIP2010提高组题解 T1:机器翻译 题目大意:顺序输入n个数,有一个队列容量为m,遇到未出现元素入队,求入队次数. AC做法:直接开1000的队列模拟过程. T2:乌龟棋 题目大意:有长度为n ...

  6. NOIP 2014 提高组 题解

    NOIP 2014 提高组 题解 No 1. 生活大爆炸版石头剪刀布 http://www.luogu.org/problem/show?pid=1328 这是道大水题,我都在想怎么会有人错了,没算法 ...

  7. NOIP 2001 提高组 题解

    NOIP 2001 提高组 题解 No 1. 一元三次方程求解 https://vijos.org/p/1116 看见有人认真推导了求解公式,然后猥琐暴力过的同学们在一边偷笑~~~ 数据小 暴力枚举即 ...

  8. NOIP 2000 提高组 题解

    NOIP2000 提高组 题解 No 1. 进制转换 https://www.rqnoj.cn/problem/295 水题 对于n和基数r, 每次用n mod r, 把余数按照逆序排列 注意 mod ...

  9. [NOIp2018提高组]旅行

    [NOIp2018提高组]旅行: 题目大意: 一个\(n(n\le5000)\)个点,\(m(m\le n)\)条边的连通图.可以从任意一个点出发,前往任意一个相邻的未访问的结点,或沿着第一次来这个点 ...

随机推荐

  1. Jenkenis报错:该jenkins实例似乎已离线[转]

    解决方法: 安装插件那个页面,就是提示你offline的那个页面,不要动.然后打开一个新的tab,输入网址http://localhost:8080/pluginManager/advanced. 这 ...

  2. Item 4 ----通过私有构造器强化不可实例化的能力

    场景: 在创建工具类的时候,大部分是无需实例化的,实例化对它们没有意义.在这种情况下,创建的类,要确保它是不可以实例化的.   存在问题: 在创建不可实例化的类时,虽然没有定义构造器.但是,客户端在使 ...

  3. Spring总结以及在面试中的一些问题(山东数漫江湖)

    1.谈谈你对spring IOC和DI的理解,它们有什么区别? IoC Inverse of Control 反转控制的概念,就是将原本在程序中手动创建UserService对象的控制权,交由Spri ...

  4. TensorFlow 模型保存和导入、加载

    在TensorFlow中,保存模型与加载模型所用到的是tf.train.Saver()这个类.我们一般的想法就是,保存模型之后,在另外的文件中重新将模型导入,我可以利用模型中的operation和va ...

  5. word-wrap word-break 区别

    word-wrap word-break 区别 word-break * word-break:break-all;//直接把单词截断 * word-break:break-word;//虽然单词截断 ...

  6. 使用JQGrid 问题汇总 不定时更新

    jqgrid左下角的复杂搜索框显示为下拉框样式searchoptions: { value: ": 全部; 1: 在用; 2: 报废", sopt: ['eq'] } jqgrid ...

  7. nodejs安装express以后,使用express显示不是内部或外部命令

    1.问题描述 在命令窗口通过npm install -g express 安装express以后,通过express -e express新建工程失败,提示express不是内部或外部命令 2.解决方 ...

  8. Django 1.10中文文档-第一个应用Part6-静态文件

    本教程上接Part5 .前面已经建立一个网页投票应用并且测试通过,现在主要讲述如何添加样式表和图片. 除由服务器生成的HTML文件外,网页应用一般还需要提供其它必要的文件——比如图片.JavaScri ...

  9. 【UOJ#164】清华集训2015V

    QwQzcysky真是菜死了,这是我刚上高一的时候坤爷在夏令营讲的,可是今天才切掉…… 想想也神奇,一个2016.11才学会线段树的菜鸡,夏令营的时候居然听过Segment-Tree-Beats? 所 ...

  10. canvas画画板,canvas画五角星,canvas制作钟表、Konva写钟表

    制作一个画画板,有清屏有橡皮擦有画笔可以换颜色 style样式 <head> <meta charset="UTF-8"> <title>画画板 ...