一:背景

给定一个字符串,求出其最长回文子串。例如:

  1. s="abcd",最长回文长度为 1;
  2. s="ababa",最长回文长度为 5;
  3. s="abccb",最长回文长度为 4,即bccb。

以上问题的传统思路大概是,遍历每一个字符,以该字符为中心向两边查找。其时间复杂度为$O(n^2)$,效率很差。

1975年,一个叫Manacher的人发明了一个算法,Manacher算法(中文名:马拉车算法),该算法可以把时间复杂度提升到$O(n)$。下面来看看马拉车算法是如何工作的。

二:算法过程分析

由于回文分为偶回文(比如 bccb)和奇回文(比如 bcacb),而在处理奇偶问题上会比较繁琐,所以这里我们使用一个技巧,具体做法是:在字符串首尾,及各字符间各插入一个字符(前提这个字符未出现在串里)。

举个例子:s="abbahopxpo",转换为s_new="$#a#b#b#a#h#o#p#x#p#o#"(这里的字符 $ 只是为了防止越界,下面代码会有说明),如此,s 里起初有一个偶回文abba和一个奇回文opxpo,被转换为#a#b#b#a##o#p#x#p#o#,长度都转换成了奇数

定义一个辅助数组int p[],其中p[i]表示以 i 为中心的最长回文的半径,例如:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
s_new[i] $ # a # b # b # a # h # o # p # x # p #
p[i]   1 2 1 2 5 2 1 2 1 2 1 2 1 2 1 4 1 2 1

可以看出,p[i] - 1正好是原字符串中最长回文串的长度。

接下来的重点就是求解 p 数组,如下图:

设置两个变量,mx 和 id 。mx 代表以 id 为中心的最长回文的右边界,也就是mx = id + p[id]

假设我们现在求p[i],也就是以 i 为中心的最长回文半径,如果i < mx,如上图,那么:

if (i < mx)
    p[i] = min(p[2 * id - i], mx - i);

2 * id - i为 i 关于 id 的对称点,即上图的 j 点,而p[j]表示以 j 为中心的最长回文半径,因此我们可以利用p[j]来加快查找。

三:代码

#include <iostream>
#include <cstring>
#include <algorithm>  

using namespace std;

];
];
];

int Init()
{
    int len = strlen(s);
    s_new[] = '$';
    s_new[] = '#';
    ;

    ; i < len; i++)
    {
        s_new[j++] = s[i];
        s_new[j++] = '#';
    }

    s_new[j] = '\0';  // 别忘了哦

    return j;  // 返回 s_new 的长度
}

int Manacher()
{
    int len = Init();  // 取得新字符串长度并完成向 s_new 的转换
    ;  // 最长回文长度

    int id;
    ;

    ; i < len; i++)
    {
        if (i < mx)
            p[i] = min(p[ * id - i], mx - i);  // 需搞清楚上面那张图含义, mx 和 2*id-i 的含义
        else
            p[i] = ;

        while (s_new[i - p[i]] == s_new[i + p[i]])  // 不需边界判断,因为左有'$',右有'\0'
            p[i]++;

        // 我们每走一步 i,都要和 mx 比较,我们希望 mx 尽可能的远,这样才能更有机会执行 if (i < mx)这句代码,从而提高效率
        if (mx < i + p[i])
        {
            id = i;
            mx = i + p[i];
        }

        max_len = max(max_len, p[i] - );
    }

    return max_len;
}

int main()
{
    while (printf("请输入字符串:\n"))
    {
        scanf("%s", s);
        printf("最长回文长度为 %d\n\n", Manacher());
    }
    ;
}

manacher算法求最长回文子串的更多相关文章

  1. Manacher算法——求最长回文子串

    首先,得先了解什么是回文串.回文串就是正反读起来就是一样的,如“abcdcba”.我们要是直接采用暴力方法来查找最长回文子串,时间复杂度为O(n^3),好一点的方法是枚举每一个字符,比较较它左右距离相 ...

  2. Manacher算法 求 最长回文子串

    1 概述(扯淡) 在了解Manacher算法之前,我们得先知道什么是回文串和子串. 回文串,就是正着看反着看都一样的字符串.比如说"abba"就是一个回文串,"abbc& ...

  3. Manacher算法 - 求最长回文串的利器

    求最长回文串的利器 - Manacher算法 Manacher主要是用来求某个字符串的最长回文子串. 不要被manacher这个名字吓倒了,其实manacher算法很简单,也很容易理解,程序短,时间复 ...

  4. manacher算法求最长回文子序列

    一:背景 给定一个字符串,求出其最长回文子串.例如: s="abcd",最长回文长度为 1: s="ababa",最长回文长度为 5: s="abcc ...

  5. 使用manacher算法解决最长回文子串问题

    要解决的问题 求一个字符串最长回文子串是什么.且时间复杂度 O(N) 具体描述可参考: LeetCode_5_最长回文子串 LintCode_200_最长回文子串 暴力解法 以每个字符为中心向左右两边 ...

  6. hdu 3068 最长回文 (Manacher算法求最长回文串)

    参考博客:Manacher算法--O(n)回文子串算法 - xuanflyer - 博客频道 - CSDN.NET 从队友那里听来的一个算法,O(N)求得每个中心延伸的回文长度.这个算法好像比较偏门, ...

  7. 小白月赛13 B小A的回文串 (马拉车算法求最长回文子串)

    链接:https://ac.nowcoder.com/acm/contest/549/B来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言52428 ...

  8. leetcode 5 Longest Palindromic Substring(Manacher算法求最长回文串)

    应用一下manacher算法就可以O(n)求出结果了.可以参考hdu3068 substr(start,length)函数是这样用的: substr 方法 返回一个从指定位置开始,并具有指定长度的子字 ...

  9. Manacher算法求最长回文串模板

    #include <algorithm> #include <iostream> #include <cstring> #include <cstdio> ...

随机推荐

  1. 再续前缘-apache.commons.beanutils的补充

    title: 再续前缘-apache.commons.beanutils的补充 toc: true date: 2016-05-32 02:29:32 categories: 实在技巧 tags: 插 ...

  2. 利用pdfJS实现以读取文件流方式在线展示pdf文件

    第一步:下载源码https://github.com/mozilla/pdf.js 第二步:构建PDF.js 第三步:修改viewer.js var DEFAULT_URL = 'compressed ...

  3. 阿里C++研发实习二面和三面面经

    下午连着面了阿里爸爸的二面和三面,非常不明白别人的三面都是hr了,为什么我还是在技术面,难道面了个假阿里.不管怎么样,来篇面经攒攒人品. 二面 第一次遇到这么严肃的面试官,居然可以全程无表情的,面了这 ...

  4. 南阳ACM 题目71:独木舟上的旅行 Java版

    独木舟上的旅行 时间限制:3000 ms  |  内存限制:65535 KB 难度:2 描述 进行一次独木舟的旅行活动,独木舟可以在港口租到,并且之间没有区别.一条独木舟最多只能乘坐两个人,且乘客的总 ...

  5. J2EE保留小数问题

    如果在前台页面,可以直接使用js的toFixed() 方法.number.toFixed(x)  可把 Number 四舍五入为指定小数位数的数字.参数x :必需.规定小数的位数,是 0 ~ 20 之 ...

  6. asp.net RDLC报表入门

    Asp.net RDLC 报表入门 这几天帮给同事讲解Asp.net RDLC 报表方面的知识,顺便做个简单教程,在这里分享给大家. 由于图片多又大,写了一半,光上传图片就把我累个半死,所以我教把程放 ...

  7. 用一个时钟在FPGA中计算直方图

    直方图对数字数据的分析通常是一种有用的工具.不过,要从一个直方图获得可靠的结果,必须获得大量数据,通常是要10万到100万个点.如果需要分析一个ADC的数字输出,可以采用一片FPGA(图1). 图中显 ...

  8. 【CodeForces】601 D. Acyclic Organic Compounds

    [题目]D. Acyclic Organic Compounds [题意]给定一棵带点权树,每个点有一个字符,定义一个结点的字符串数为往下延伸能得到的不重复字符串数,求min(点权+字符串数),n&l ...

  9. Winform Socket通信

    Socket相关概念[端口] 在Internet上有很多这样的主机,这些主机一般运行了多个服务软件,同时提供几种服务.每种服务都打开一个Socket,并绑定到一个端口上,不同的端口对应于不同的服务(应 ...

  10. C++之容器

    容器,迭代器与容器适配器 所谓容器,即是将最常运用的一些数据结构(data structures)用类模板实现出来,用于容纳特定类型的对象.根据数据在容器中排列的特性,容器可概分为序列式(sequen ...