manacher算法求最长回文子串
一:背景
给定一个字符串,求出其最长回文子串。例如:
- s="abcd",最长回文长度为 1;
- s="ababa",最长回文长度为 5;
- s="abccb",最长回文长度为 4,即bccb。
以上问题的传统思路大概是,遍历每一个字符,以该字符为中心向两边查找。其时间复杂度为$O(n^2)$,效率很差。
1975年,一个叫Manacher的人发明了一个算法,Manacher算法(中文名:马拉车算法),该算法可以把时间复杂度提升到$O(n)$。下面来看看马拉车算法是如何工作的。
二:算法过程分析
由于回文分为偶回文(比如 bccb)和奇回文(比如 bcacb),而在处理奇偶问题上会比较繁琐,所以这里我们使用一个技巧,具体做法是:在字符串首尾,及各字符间各插入一个字符(前提这个字符未出现在串里)。
举个例子:s="abbahopxpo"
,转换为s_new="$#a#b#b#a#h#o#p#x#p#o#"
(这里的字符 $ 只是为了防止越界,下面代码会有说明),如此,s 里起初有一个偶回文abba
和一个奇回文opxpo
,被转换为#a#b#b#a#
和#o#p#x#p#o#
,长度都转换成了奇数。
定义一个辅助数组int p[]
,其中p[i]
表示以 i 为中心的最长回文的半径,例如:
i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
s_new[i] | $ | # | a | # | b | # | b | # | a | # | h | # | o | # | p | # | x | # | p | # |
p[i] | 1 | 2 | 1 | 2 | 5 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 4 | 1 | 2 | 1 |
可以看出,p[i] - 1
正好是原字符串中最长回文串的长度。
接下来的重点就是求解 p 数组,如下图:
设置两个变量,mx 和 id 。mx 代表以 id 为中心的最长回文的右边界,也就是mx = id + p[id]
。
假设我们现在求p[i]
,也就是以 i 为中心的最长回文半径,如果i < mx
,如上图,那么:
if (i < mx)
p[i] = min(p[2 * id - i], mx - i);
2 * id - i
为 i 关于 id 的对称点,即上图的 j 点,而p[j]
表示以 j 为中心的最长回文半径,因此我们可以利用p[j]
来加快查找。
三:代码
#include <iostream> #include <cstring> #include <algorithm> using namespace std; ]; ]; ]; int Init() { int len = strlen(s); s_new[] = '$'; s_new[] = '#'; ; ; i < len; i++) { s_new[j++] = s[i]; s_new[j++] = '#'; } s_new[j] = '\0'; // 别忘了哦 return j; // 返回 s_new 的长度 } int Manacher() { int len = Init(); // 取得新字符串长度并完成向 s_new 的转换 ; // 最长回文长度 int id; ; ; i < len; i++) { if (i < mx) p[i] = min(p[ * id - i], mx - i); // 需搞清楚上面那张图含义, mx 和 2*id-i 的含义 else p[i] = ; while (s_new[i - p[i]] == s_new[i + p[i]]) // 不需边界判断,因为左有'$',右有'\0' p[i]++; // 我们每走一步 i,都要和 mx 比较,我们希望 mx 尽可能的远,这样才能更有机会执行 if (i < mx)这句代码,从而提高效率 if (mx < i + p[i]) { id = i; mx = i + p[i]; } max_len = max(max_len, p[i] - ); } return max_len; } int main() { while (printf("请输入字符串:\n")) { scanf("%s", s); printf("最长回文长度为 %d\n\n", Manacher()); } ; }
manacher算法求最长回文子串的更多相关文章
- Manacher算法——求最长回文子串
首先,得先了解什么是回文串.回文串就是正反读起来就是一样的,如“abcdcba”.我们要是直接采用暴力方法来查找最长回文子串,时间复杂度为O(n^3),好一点的方法是枚举每一个字符,比较较它左右距离相 ...
- Manacher算法 求 最长回文子串
1 概述(扯淡) 在了解Manacher算法之前,我们得先知道什么是回文串和子串. 回文串,就是正着看反着看都一样的字符串.比如说"abba"就是一个回文串,"abbc& ...
- Manacher算法 - 求最长回文串的利器
求最长回文串的利器 - Manacher算法 Manacher主要是用来求某个字符串的最长回文子串. 不要被manacher这个名字吓倒了,其实manacher算法很简单,也很容易理解,程序短,时间复 ...
- manacher算法求最长回文子序列
一:背景 给定一个字符串,求出其最长回文子串.例如: s="abcd",最长回文长度为 1: s="ababa",最长回文长度为 5: s="abcc ...
- 使用manacher算法解决最长回文子串问题
要解决的问题 求一个字符串最长回文子串是什么.且时间复杂度 O(N) 具体描述可参考: LeetCode_5_最长回文子串 LintCode_200_最长回文子串 暴力解法 以每个字符为中心向左右两边 ...
- hdu 3068 最长回文 (Manacher算法求最长回文串)
参考博客:Manacher算法--O(n)回文子串算法 - xuanflyer - 博客频道 - CSDN.NET 从队友那里听来的一个算法,O(N)求得每个中心延伸的回文长度.这个算法好像比较偏门, ...
- 小白月赛13 B小A的回文串 (马拉车算法求最长回文子串)
链接:https://ac.nowcoder.com/acm/contest/549/B来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言52428 ...
- leetcode 5 Longest Palindromic Substring(Manacher算法求最长回文串)
应用一下manacher算法就可以O(n)求出结果了.可以参考hdu3068 substr(start,length)函数是这样用的: substr 方法 返回一个从指定位置开始,并具有指定长度的子字 ...
- Manacher算法求最长回文串模板
#include <algorithm> #include <iostream> #include <cstring> #include <cstdio> ...
随机推荐
- svn稀疏目录--通过设置工作目录的深度(depth)实现目录树的部分签出
对于一个大的版本库来说,本地工作目录签出整个目录树是即费时又占地儿的.虽然可以只签出某个子目录树,但有时候还是需要从根目录签出.那么,怎么才能只把自己感兴趣的子目录签出来呢? 从svn1.5版开始,提 ...
- 用reduce实现简单的pipe
function pipe(src, ...fns){ return fns.reduce(function(fn1, fn2){ return fn2(fn1) }, src); } undefin ...
- [bzoj4567][Scoi2016]背单词-Trie+贪心+模型转化
Brief Description 给你N个互不相同的字符串,记\(S_i\)为第i个字符串,现在要求你指定N个串的出现顺序,我们用\(V_i\)表示第i个字符串是第几个出现的,则V为1到N的一个排列 ...
- bootstrap基本用法
进入中文官网:http://www.bootcss.com 开始第一个Demo 准备工作: (1)进入bootstrap中文官网,点击起步 (2)下载生产环境 下载好的文件是一 ...
- Python3.3.3 安装(Linux系统)
1.wget http://www.python.org/ftp/python/3.3.3/Python-3.3.3.tgz //检查http://www.python.org/ftp/python网 ...
- Ribbon自带负载均衡策略比较
Ribbon自带负载均衡策略比较 策略名 策略声明 策略描述 实现说明 BestAvailableRule public class BestAvailableRule extends ClientC ...
- upupw注入by pass
http:' and updatexml(null,concat(0x5c,(/*!00000select SCHEMA_name*/from/*!information_schema*/.schem ...
- ms17-010 攻击win7漏洞复现
只是为了好玩重新写一篇.利用还是很简单的. 将下载下来的rb放置在:/usr/share/metasploit-framework/modules/exploits/windows/smb/ 目录下 ...
- Ubuntu 14.04 安装gstreamer0.10-ffmpeg
sudo apt-add-repository ppa:mc3man/trusty-media sudo apt-get update sudo apt-get install -y gstreame ...
- 压缩LDF档
--压缩LDF档 USE VoucherServer; GO -- Truncate the log by changing the database recovery model to SIMPLE ...