题目链接

Problem Description

A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.

Input

The input file will contain one or more test cases. The first line of each test case contains an integer n,

representing the number of different blocks in the following data set. The maximum value for n is 30.

Each of the next n lines contains three integers representing the values xi, yi and zi.

Input is terminated by a value of zero (0) for n.

Output

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".

Sample Input

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0

Sample Output

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342

分析:

题目倒是不难!对于动态规划的题,我觉得最重要的就是找出所谓的递归方程吧!

这点最为重要!找到了递归方程,代码实现只是时间问题罢了!

这道题目有一些要点要抓住!

1,下一层的面积要严格大于上一层!我在这里错了几次!所谓严格大于,那就是下一层的长宽都大于下一层的长宽或宽长,等于都不行!

2,这道问题比较像01背包问题!我用的方法是拆分!即将一种block拆成3种!(一种block有三种摆放姿势,且一种block最多放这三种姿势)这样,先按照面积排序!然后再次动归!可以减少时间复杂度!

3,hdp[i]表示如果以第i块block为顶,最多可以达到的高度!

代码:

#include<iostream>
#include<stdio.h>
#include <algorithm>
using namespace std; typedef struct Block
{
int x,y,high,dp;
}; bool cmp(Block a,Block b)
{
if(a.x<b.x)
return 1;
else if(a.x==b.x&&a.y<a.y)
return 1;
return 0;
} int max(int a,int b)
{
return a>b?a:b;
}
Block b[1000];
int main()
{
int x,y,z,n,i,j,k,Max,p=0;
while(~scanf("%d",&n)&&n)
{
p++;
k=0;
while(n--)
{
scanf("%d%d%d",&x,&y,&z);
if(x==y)
{
if(y==z)
{
b[k].x=x;
b[k].y=x;
b[k].high=x;
b[k++].dp=x;
}
else
{
b[k].x=b[k].y=x;
b[k].high=z;
b[k++].dp=z;
b[k].x=x;
b[k].y=z;
b[k].high=x;
b[k++].dp=x;
b[k].x=z;
b[k].y=x;
b[k].high=x;
b[k++].dp=x;
}
}
else
{
if(x==z)
{
b[k].x=b[k].y=x;
b[k].high=y;
b[k++].dp=y;
b[k].x=x;
b[k].y=y;
b[k].high=x;
b[k++].dp=x;
b[k].x=y;
b[k].y=x;
b[k].high=x;
b[k++].dp=x;
}
else if(y==z)
{
b[k].x=b[k].y=y;
b[k].high=x;
b[k++].dp=x;
b[k].x=x;
b[k].y=y;
b[k].high=y;
b[k++].dp=y;
b[k].x=y;
b[k].y=x;
b[k].high=y;
b[k++].dp=y;
}
else
{
b[k].x=x;
b[k].y=y;
b[k].high=z;
b[k++].dp=z;
b[k].x=x;
b[k].y=z;
b[k].high=y;
b[k++].dp=y;
b[k].x=y;
b[k].y=x;
b[k].high=z;
b[k++].dp=z;
b[k].x=y;
b[k].y=z;
b[k].high=x;
b[k++].dp=x;
b[k].x=z;
b[k].y=x;
b[k].high=y;
b[k++].dp=y;
b[k].x=z;
b[k].y=y;
b[k].high=x;
b[k++].dp=x;
}
}
sort(b,b+k,cmp);
Max=0;
for(i=0; i<k; i++)
{
for(j=0; j<i; j++)
if(b[i].x>b[j].x&&b[i].y>b[j].y)
b[i].dp=max((b[j].dp+b[i].high),b[i].dp);
Max=max(b[i].dp,Max);
}
}
printf("Case %d: maximum height = %d\n",p,Max);
}
return 0;
}

HDU 1069 Monkey and Banana (dp)的更多相关文章

  1. HDU 1069 Monkey and Banana ——(DP)

    简单DP. 题意:给出若干种长方体,如果摆放时一个长方体的长和宽小于另一个的长宽,那么它可以放在另一个的上面,问最高能放多少高度.每种长方体的个数都是无限的. 做法:因为每种个数都是无限,那么每种按照 ...

  2. HDU 1069 Monkey and Banana(动态规划)

    Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...

  3. HDU 1069 Monkey and Banana(DP——最大递减子序列)

    题目链接: http://acm.split.hdu.edu.cn/showproblem.php?pid=1069 题意描述: 给n块砖,给出其长,宽和高 问将这n块砖,怎样叠放使得满足以下条件使得 ...

  4. HDU 1069 Monkey and Banana (动态规划)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 简单记录一下 思路:把长方体的各种摆法都存到数组里面,然后按照长宽排序,再dp即可 转移方程 d ...

  5. HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...

  6. HDU 1069:Monkey and Banana(DP)

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  7. HDU 1069 Monkey and Banana(二维偏序LIS的应用)

    ---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  8. HDU 1069 Monkey and Banana (动态规划、上升子序列最大和)

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. HDU 1069 Monkey and Banana 基础DP

    题目链接:Monkey and Banana 大意:给出n种箱子的长宽高.每种不限个数.可以堆叠.询问可以达到的最高高度是多少. 要求两个箱子堆叠的时候叠加的面.上面的面的两维长度都严格小于下面的. ...

随机推荐

  1. #Leetcode# 700. Search in a Binary Search Tree

    https://leetcode.com/problems/search-in-a-binary-search-tree/ Given the root node of a binary search ...

  2. Thinkphp5使用validate实现验证功能

    作为前端er,对于验证这块有着切身的体会,虽然逐渐得心应手,但始终没有一个内置的功能拿来就能用.tp5恰好提供一个.本文简单介绍并实现以下.主要是实现一下. 验证的实现基于tp5内置的对象valida ...

  3. windows批处理学习---01

    一. 标记符号: CR(0D) 命令行结束符 Escape(1B) ANSI转义字符引导符 Space() 常用的参数界定符 Tab() ; = 不常用的参数界定符 + COPY命令文件连接符 * ? ...

  4. 使用Windows Live Writer拉取之前写的博客

    因为之前写的博客有错误需要修改,但是在Windows Live Writer中找了半天也没找到怎么拉取之前的博客,在[打开本地草稿]或者[打开最近使用过的日志]中,由于存储的项数有限,所以就找不到那篇 ...

  5. vue-cli项目打包出现空白页和路径错误问题

    vue-cli项目打包: 1. 命令行输入:npm  run  build 打包出来后项目中就会多了一个文件夹dist,这就是我们打包过后的项目. 第一个问题,文件引用路径.我们直接运行打包后的文件夹 ...

  6. CenOS shell脚本

    1.先查看脚本解释器 [es@bigdata-senior01 ~]$ echo $SHELL /bin/bash 2.编写最简单的脚本 vi test.sh#第一行的脚本声明(#!)用来告诉系统使用 ...

  7. 2017 ICPC beijing E - Cats and Fish

    #1631 : Cats and Fish 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 There are many homeless cats in PKU camp ...

  8. 洛谷 P3332 [ZJOI2013]K大数查询 解题报告

    P3332 [ZJOI2013]K大数查询 题目描述 有\(N\)个位置,\(M\)个操作.操作有两种,每次操作如果是\(\tt{1\ a\ b\ c}\)的形式表示在第\(a\)个位置到第\(b\) ...

  9. ContestHunter暑假欢乐赛 SRM 02

    惨不忍睹 3个小时都干了些什么... 日常按顺序从A题开始(难度居然又不是递增的 第一眼A题就觉得很简单...写到一半才发现woc那是个环.感觉一下子复杂了,按照链的方法扩展的话要特判很多东西... ...

  10. Mysql 语句优化技巧

    前言 有人反馈之前几篇文章过于理论缺少实际操作细节,这篇文章就多一些可操作性的内容吧. 注:这篇文章是以 MySQL 为背景,很多内容同时适用于其他关系型数据库,需要有一些索引知识为基础. 优化目标 ...