Kruskal算法-最小生成树
2017-07-26 10:32:07
writer:pprp
Kruskal算法是根据边的加权值以递增的方式,一次找出加权值最低的边来建最小生成树;并且每次添加的边不能造成生成树有回路,直到找到N-1个边为止;
适用范围:边集比较少的时候,可以考虑用这个方法;
做法:将图形中所有的边的权值,递增排序(快速排序),按从小到大,依次将邻接边加入到生成树中,加入的生成树不能有回路,直到N-1个边;
还用到了并查集;
代码如下:
#include <iostream> using namespace std; const int MAXN = ;
const int INF = ;
int n,e;// n是点的数量,e是边的数量
int x[MAXN],y[MAXN],w[MAXN];
int parent[MAXN]; int Find(int x)
{
if(parent[x] == x)
return x;
else
return parent[x] = Find(parent[x]);
} void Merge(int a,int b)
{
int pa = Find(a);
int pb = Find(b);
if(pb < pa)
swap(pb,pa);
if(pa!=pb)
parent[pa] = pb;
} void kruskal()
{
int i,p,ans; //p是已经加入的边数,ans是加入边的边权之和 for(i = ; i<=n ; i++) //initialize
{
parent[i] = i;
} p = ;
ans = ; for(i = ; i <= e; i++)
{
if(Find(x[i])!=Find(y[i]))// 两点没有在同一个集合中,归并两个集合
{
ans += w[i];
Merge(x[i],y[i]);
p++;
if(p == n) //这里不是n-1,因为初始化的时候,p = 1
{
cout << ans << endl;
return;
}
}
}
return;
} void sort(int i, int j)
{
if(i >=j)
return;
int m,n,k;
m = i;
n = j;
k = w[(i+j)>>];
while(m <= n)
{
while(w[m]<k)
m++;
while(w[n]>k)
n--;
if(m <= n)
{
swap(x[m],x[n]);
swap(y[m],y[n]);
swap(w[m],w[n]);
m++;
n--;
}
}
sort(i,n);
sort(m,j);
} int main()
{
int i,j;
cin >> n >> e;
for(i = ; i <= e ; i++)
{
cin >> x[i] >> y[i] >> w[i];
} sort(,e); kruskal(); return ;
}
这个sort函数比较有特点,sort函数根据权值w[MAXN]的大小进行判断,交换的时候将x[MAXN],y[MAXN]都交换了,相当于将 x,y,w对应起来;
图例描述:参考:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html
首先第一步,我们有一张图Graph,有若干点和边
将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择,排序完成后,我们率先选择了边AD。这样我们的图就变成了右图
在剩下的变中寻找。我们找到了CE。这里边的权重也是5
依次类推我们找到了6,7,7,即DF,AB,BE。
下面继续选择, BC或者EF尽管现在长度为8的边是最小的未选择的边。但是现在他们已经连通了(对于BC可以通过CE,EB来连接,类似的EF可以通过EB,BA,AD,DF来接连)。所以不需要选择他们。类似的BD也已经连通了(这里上图的连通线用红色表示了)。
Kruskal算法-最小生成树的更多相关文章
- POJ-2349(kruskal算法+最小生成树中最大边的长度)
Arctic POJ-2349 这题是最小生成树的变形题目.题目的意思是已经有s个卫星频道,这几个卫星频道可以构成一部分的网络,而且不用费用,剩下的需要靠d的卫星接收器.题目要求的就是最小生成树中,最 ...
- 最小生成树---Prim算法和Kruskal算法
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...
- 最小生成树的Kruskal算法实现
最近在复习数据结构,所以想起了之前做的一个最小生成树算法.用Kruskal算法实现的,结合堆排序可以复习回顾数据结构.现在写出来与大家分享. 最小生成树算法思想:书上说的是在一给定的无向图G = (V ...
- 最小生成树——kruskal算法
kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...
- 贪心算法-最小生成树Kruskal算法和Prim算法
Kruskal算法: 不断地选择未被选中的边中权重最轻且不会形成环的一条. 简单的理解: 不停地循环,每一次都寻找两个顶点,这两个顶点不在同一个真子集里,且边上的权值最小. 把找到的这两个顶点联合起来 ...
- Prim算法和Kruskal算法(图论中的最小生成树算法)
最小生成树在一个图中可以有多个,但是如果一个图中边的权值互不相同的话,那么最小生成树只可能存在一个,用反证法很容易就证明出来了. 当然最小生成树也是一个图中包含所有节点的权值和最低的子图. 在一个图中 ...
- 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...
- 最小生成树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind
最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小 ...
- 最小生成树Kruskal算法
Kruskal算法就是把图中的所有边权值排序,然后从最小的边权值开始查找,连接图中的点,当该边的权值较小,但是连接在途中后会形成回路时就舍弃该边,寻找下一边,以此类推,假设有n个点,则只需要查找n-1 ...
随机推荐
- Java日期类:Date和Calendar的使用
总是使用这两个类,总是需要百度.还不如一次全部整理完. 一.介绍: Date 类 Date 表示特定的瞬间,精确到毫秒. 在 JDK 1.1 之前,类 Date 有两个其他的函数.它允许把日期解释为年 ...
- English Grammar
What is Grammar?
- :nohlsearch
vim 编辑器 ——黄色阴影的消除问题 - leikun153的博客 - CSDN博客 https://blog.csdn.net/leikun153/article/details/78903597 ...
- php accumulation rockmongo
php -r 'echo substr(sprintf("%o",fileperms("./")),-4);'
- django-admin详细设置
Django自带的后台管理是Django明显特色之一,可以让我们快速便捷管理数据.后台管理可以在各个app的admin.py文件中进行控制.以下是我最近摸索总结出比较实用的配置.若你有什么比较好的配置 ...
- Tomcat 自定义默认网站目录
上面访问的网址为http://192.168.0.108:8080/memtest/meminfo.jsp 需求: 现在我想访问格式为http://192.168.0.108:8080/meminfo ...
- zabbix-监控Linux服务器
一.zabbix监控 1.关闭防火墙 [root@localhost ~]# systemctl stop firewalld [root@localhost ~]# systemctl disabl ...
- appium API java
原创内容,未经允许,禁止转载! driver.close();//关闭 driver.closeApp();//关闭应用,其实就是按home键把应用置于后台 driver.currentActivit ...
- MySQL的搜索引擎,统一字符编码 和忘记MySQL密码如何破解
忘记mysql密码 linux平台下,破解密码的两种方式 [root@egon ~]# rm -rf /var/lib/mysql/mysql #所有授权信息全部丢失!!! [root@egon ~] ...
- Kattis - cokolada【水】
Kattis - cokolada[水] 题意 有一个人想吃巧克力,但是巧克力都是按照 2 的幂次的数量包装的,然后他想吃一定数量块的巧克力,然后可以敲碎,每次敲碎都分成两半,比如四块装的分成两块就是 ...