预处理图像

文件名:       cat.jpg

读取、打印图片

import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np image_raw_data = tf.gfile.FastGFile("./cat.jpg",'rb').read() with tf.Session() as sess:
img_data = tf.image.decode_jpeg(image_raw_data) # 输出解码之后的三维矩阵。
#print(img_data.eval()) #print(img_data.get_shape())
img_data.set_shape([1797, 2673, 3])
print(img_data.get_shape()) with tf.Session() as sess:
plt.imshow(img_data.eval())
#print(img_data.get_shape().as_list())
plt.show()

调整图片大小

tf.image.convert_image_dtype  

image_float = tf.image.convert_image_dtype(img_data, tf.float32) 等价于 image_float=tf.cast(img_data, tf.float32)/255
 

tf.image.resize_images 调整图像大小
with tf.Session() as sess:
# 如果直接以0-255范围的整数数据输入resize_images,那么输出将是0-255之间的实数,不利于后续处理。
#如果直接以0-1之间的实数数据输入resize_images,那么输出将是0-1之间的实数。 #建议在调整图片大小前,先将图片转为0-1范围的实数。
#tf.image.convert_image_dtype
#image_float=tf.cast(img_data, tf.float32)/255
image_float = tf.image.convert_image_dtype(img_data, tf.float32) resized = tf.image.resize_images(image_float, [300, 300], method=0)
#print(resized.eval())
plt.imshow(resized.eval())
plt.show()

裁剪和填充图片

tf.image.resize_image_with_crop_or_pad
# 裁剪、填充图像
with tf.Session() as sess:
#tf.image.resize_image_with_crop_or_pad 函数对原图像裁剪或填充。第一个参数为原始图像,后面两个参数为图像裁剪或填充后的大小。
# 如果原始图像的尺寸大于目标图像,则自动截取原图像居中部分;如果原图像的尺寸大于目标图像,则自动在原始图像四周填充0为背景。
croped = tf.image.resize_image_with_crop_or_pad(img_data, 1000, 1000) #截取
padded = tf.image.resize_image_with_crop_or_pad(img_data, 3000, 3000) #填充
#plt.imshow(croped.eval())
#plt.show()
plt.imshow(padded.eval())
plt.show()
通过比例裁剪图像大小
# 通过比例裁剪图像大小
# tf.image.central_crop 第一个参数为原始图像,第二个为调整比例,该比例为 (0,1] 的实数。
with tf.Session() as sess:
central_crop = tf.image.central_crop(img_data, 0.5)
plt.imshow(central_crop.eval())
plt.show()
图像翻转
# 图像翻转
with tf.Session() as sess:
# 上下翻转
flipped1 = tf.image.flip_up_down(img_data)
plt.imshow(flipped1.eval())
plt.show() # 左右翻转
flipped2 = tf.image.flip_left_right(img_data)
plt.imshow(flipped2.eval())
plt.show() #对角线翻转
transposed = tf.image.transpose_image(img_data)
plt.imshow(transposed.eval())
plt.show() # 以一定概率上下翻转图片。
# 以50%概率上下翻转图片
flipped1 = tf.image.random_flip_up_down(img_data)
plt.imshow(flipped1.eval())
plt.show() # 以一定概率左右翻转图片。
# 以50%概率左右翻转图片
flipped2 = tf.image.random_flip_left_right(img_data)
plt.imshow(flipped2.eval())
plt.show()
图像色彩调整
# 图像色彩调整
with tf.Session() as sess:
# 在进行一系列图片调整前,先将图片转换为实数形式,有利于保持计算精度。
image_float = tf.image.convert_image_dtype(img_data, tf.float32)


# 亮度调整##############################
# 将图片的亮度+0.5。
#adjusted = tf.image.adjust_brightness(image_float, 0.5) # 将图片的亮度-0.5
#adjusted = tf.image.adjust_brightness(image_float, -0.5) # 随机亮度调整
# 在[-max_delta, max_delta)的范围随机调整图片的亮度。
#adjusted = tf.image.random_brightness(image_float, max_delta=0.5)

# 对比度调整##############################
# (x-mean)*delta+mean
# 将图片的对比度+5
#adjusted = tf.image.adjust_contrast(image_float, 5) # 将图片的对比度-0.5
#adjusted = tf.image.adjust_contrast(image_float, -0.5) # 在[lower, upper]的范围随机调整图的对比度。
# upper >= lower >= 0
lower=0.5
upper=5
#adjusted = tf.image.random_contrast(image_float, lower, upper)

# 色相调整##############################
# delta 范围:[-1, +1]
#adjusted = tf.image.adjust_hue(image_float, -0.1)
#adjusted = tf.image.adjust_hue(image_float, -0.3)
#adjusted = tf.image.adjust_hue(image_float, -0.6)
#adjusted = tf.image.adjust_hue(image_float, -0.9)
#adjusted = tf.image.adjust_hue(image_float, 0.1)
#adjusted = tf.image.adjust_hue(image_float, 0.3)
#adjusted = tf.image.adjust_hue(image_float, 0.6)
#adjusted = tf.image.adjust_hue(image_float, 0.9) # 在[-max_delta, max_delta]的范围随机调整图片的色相。max_delta的取值在[0, 0.5]之间。
max_delta=0.3
#adjusted = tf.image.random_hue(image_float, max_delta)

# 饱和度调整##############################
# 将图片的饱和度-5。
#adjusted = tf.image.adjust_saturation(image_float, -5)
# 将图片的饱和度+5。
#adjusted = tf.image.adjust_saturation(image_float, 5)
# 在[lower, upper]的范围随机调整图的饱和度。
lower=0 # lower>=0
upper=5
#adjusted = tf.image.random_saturation(image_float, lower, upper)

# 将代表一张图片的三维矩阵中的数字均值变为0,方差变为1。
adjusted = tf.image.per_image_standardization(image_float)

# 在最终输出前,将实数取值截取到0-1范围内。
adjusted = tf.clip_by_value(adjusted, 0.0, 1.0)
plt.imshow(adjusted.eval())
plt.show()

TensorFlow图像预处理函数的更多相关文章

  1. TensorFlow图像预处理-函数

    更多的基本的API请参看TensorFlow中文社区:http://www.tensorfly.cn/tfdoc/api_docs/python/array_ops.html 下面是实验的代码,可以参 ...

  2. TensorFlow图像预处理完整样例

    参考书 <TensorFlow:实战Google深度学习框架>(第2版) 以下TensorFlow程序完成了从图像片段截取,到图像大小调整再到图像翻转及色彩调整的整个图像预处理过程. #! ...

  3. TensorFlow 图像预处理(一) 图像编解码,图像尺寸调整

    from: https://blog.csdn.net/chaipp0607/article/details/73029923 TensorFlow提供了几类图像处理函数,下面介绍图像的编码与解码,图 ...

  4. 吴裕雄 python 神经网络——TensorFlow 图像预处理完整样例

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt def distort_color(image, ...

  5. 『TensorFlow』第九弹_图像预处理_不爱红妆爱武装

    部分代码单独测试: 这里实践了图像大小调整的代码,值得注意的是格式问题: 输入输出图像时一定要使用uint8编码, 但是数据处理过程中TF会自动把编码方式调整为float32,所以输入时没问题,输出时 ...

  6. python+opencv 图像预处理

    一 python 生成随机字符串序列+ 写入到图片上 from PIL import Image,ImageDraw,ImageFont import numpy as np import rando ...

  7. 基于OpenCV的火焰检测(一)——图像预处理

    博主最近在做一个基于OpenCV的火焰检测的项目,不仅可以检测图片中的火焰,还可以检测视频中的火焰,最后在视频检测的基础上推广到摄像头实时检测.在做这个项目的时候,博主参考了很多相关的文献,用了很多种 ...

  8. [opencv]图像预处理方案及方式

    像识别中,图像质量的好坏直接影响识别算法的设计与效果精度,那么除了能在算法上的优化外,预处理技术在整个项目中占有很重要的因素,然而人们往往忽略这一点. 图像预处理,将每一个文字图像分检出来交给识别模块 ...

  9. 深度学习03-(图像梯度处理、图像轮廓、图像预处理在AI中的应用)

    深度学习03-计算机视觉基本理论2 深度学习03-(计算机视觉基本理论2) 图像梯度处理 什么是图像梯度 模板运算 均值滤波 高斯滤波 中值滤波 边沿检测 锐化 图像轮廓 什么是图像轮廓 查找和绘制轮 ...

  10. 图像预处理第9步:存为.bmp文件

    //图像预处理第9步:将最终标准化后的字符图像分为单个单个的HDIB保存,并存为.bmp文件 void CChildView::OnImgprcToDibAndSave() { unsigned ch ...

随机推荐

  1. 大量索引场景下 Easysearch 和 Elasticsearch 的吞吐量差异

    最近有客户在使用 Elasticsearch 搜索服务时发现集群有掉节点,并且有 master 收集节点信息超时的日志,节点的负载也很高,不只是 data 节点,master 和协调节点的 cpu 使 ...

  2. GO语言 GOLANG 上传微信电子小票图片

    GO语言 GOLANG 上传微信电子小票图片.GO HTTP POST 图片文件.GO 上传图片文件.multipart/form-data.image/jpeg.image/png. GO 环境: ...

  3. 如何监控文件变化,比如密码修改导致 shadow 文件变化

    原始需求是如果系统的密码被修改,或者创建了新用户,就告警出来.本质上,只需要监控 /etc/shadow 文件变化即可.但是在指标监控体系里,这个事情就比较棘手,只能把文件的 mtime 作为指标的值 ...

  4. 怎么实现鼠标移入第i个li则对应显示第i个div,默认显示第一个LI

    html 部分 <ul> <li>菜单1</li> <li>菜单2</li> <li>菜单3</li> <li ...

  5. 使用python解析nginx日志

    性能测试时,需使用生产环境各接口请求比例分配接口请求比,nginx统计脚本如下: import re import pandas as pd import xlwt obj = re.compile( ...

  6. Linux下挂载NTFS格式的U盘

    NTFS是Windows下的格式,在Linux下是识别不了的,要想在Linux上挂载NTFS格式的U盘需要安装软件以提供支持.软件名为ntfs-3g. 1.下载安装包 https://tuxera.c ...

  7. UEFI与inf文件

    UEFI与inf文件 背景 学习高通UEFI中的LCD显示框架,看到有些博客对inf文件进行了介绍,因此整理了这方面的一些入门知识. 参考: https://blog.csdn.net/yunfeng ...

  8. joigsc2022_e 题解

    翻译 有长度为 \(n\) 的序列 \(a\) 和 \(L\),你需要对于每个 \(x \in[1,n]\) 求出若把第 \(x\) 个数到第 \(n\) 个数依次装入容量为 \(L\) 的箱子中(每 ...

  9. python3 模型日记

    说明 作为一种 python 框架模型的记录吧,用于个人总结,不定时更新. 正文 1. 主进程退出后,子进程也跟着退出 之前遇到过一种情况,用 flet 写了一个页面,然后又同时开了一个 tcp se ...

  10. yb课堂 VueCli 4.3搭建yb课堂前端项目架构 《三十二》

    使用VueCli 4.3搭建yb课堂前端项目框架 创建yb课堂Vue项目 vue create ybclass_front 选择feature模式 安装vuex.vue-router,用vscode打 ...