题目


分析

首先这明显是一道差分约束题,但是无解的情况确实比较恶心,

考虑它的边权为0或1,无解当且仅当某个强连通分量内的边至少一条边边权为1,

那么用有向图的Tarjan缩点后跑SPFA就可以了


代码

#include <cstdio>
#include <cctype>
#include <stack>
#include <cstring>
#include <queue>
#define rr register
using namespace std;
const int N=100011; stack<int>stac; queue<int>q;
struct node{int y,w,next;}e[N*3],E[N*3];
int dfn[N],low[N],v[N],dis[N],hs[N],col[N];
int siz[N],as[N],cnt,tot,et,Et,n,m; long long ans;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void add(int x,int y,int w){E[++Et]=(node){y,w,hs[x]},hs[x]=Et;}
inline signed min(int a,int b){return a<b?a:b;}
inline void tarjan(int x){
dfn[x]=low[x]=++tot,
stac.push(x),v[x]=1;
for (rr int i=hs[x];i;i=E[i].next)
if (!dfn[E[i].y]){
tarjan(E[i].y);
low[x]=min(low[x],low[E[i].y]);
}else if (v[E[i].y])
low[x]=min(low[x],dfn[E[i].y]);
if (dfn[x]==low[x]){
rr int y; ++cnt;
do{
y=stac.top(); stac.pop();
col[y]=cnt,v[y]=0,++siz[cnt];
}while (x^y);
}
}
signed main(){
n=iut()+1; m=iut();
for (rr int i=1;i<n;++i) add(n,i,1);
for (rr int i=1;i<=m;++i){
rr int z=iut(),x=iut(),y=iut();
switch (z){
case 1:{
add(x,y,0),add(y,x,0);
break;
}
case 2:{
add(x,y,1);
break;
}
case 3:{
add(y,x,0);
break;
}
case 4:{
add(y,x,1);
break;
}
case 5:{
add(x,y,0);
break;
}
}
}
for (rr int i=1;i<=n;++i)
if (!dfn[i]) tarjan(i);
for (rr int i=1;i<=n;++i)
for (rr int j=hs[i];j;j=E[j].next)
if (col[i]^col[E[j].y])
e[++et]=(node){col[E[j].y],E[j].w,as[col[i]]},as[col[i]]=et;
else if (E[j].w) return !printf("-1");
memset(dis,0xcf,sizeof(dis));
q.push(col[n]),v[col[n]]=1,dis[col[n]]=0;
while (!q.empty()){
rr int x=q.front(); q.pop();
for (rr int i=as[x];i;i=e[i].next)
if (dis[e[i].y]<dis[x]+e[i].w){
dis[e[i].y]=dis[x]+e[i].w;
if (!v[e[i].y]) v[e[i].y]=1,q.push(e[i].y);
}
v[x]=0;
}
for (rr int i=1;i<=cnt;++i) ans+=siz[i]*dis[i];
return !printf("%lld",ans);
}

#Tarjan,SPFA,差分约束系统#BZOJ 2330 AcWing 368 银河的更多相关文章

  1. spfa+差分约束系统(C - House Man HDU - 3440 )+对差分约束系统的初步理解

    题目链接:https://cn.vjudge.net/contest/276233#problem/C 题目大意:有n层楼,给你每个楼的高度,和这个人单次的最大跳跃距离m,两个楼之间的距离最小是1,但 ...

  2. spfa+差分约束系统(D - POJ - 1201 && E - POJ - 1364&&G - POJ - 1)+建边的注意事项+超级源点的建立

    题目链接:https://cn.vjudge.net/contest/276233#problem/D 具体大意: 给出n个闭合的整数区间[ai,bi]和n个整数c1,-,cn. 编写一个程序: 从标 ...

  3. BZOJ 2330 [SCOI2011]糖果 ——差分约束系统 SPFA

    最小值求最长路. 最大值求最短路. 发现每个约束条件可以转化为一条边,表示一个点到另外一个点至少要加上一个定值. 限定了每一个值得取值下界,然后最长路求出答案即可. 差分约束系统,感觉上更像是两个变量 ...

  4. BZOJ 2330: [SCOI2011]糖果 [差分约束系统] 【学习笔记】

    2330: [SCOI2011]糖果 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5395  Solved: 1750[Submit][Status ...

  5. bzoj 2330 [SCOI2011]糖果(差分约束系统)

    2330: [SCOI2011]糖果 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3574  Solved: 1077[Submit][Status ...

  6. BZOJ 2330 糖果 差分约束求最小值

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2330 题目大意: 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果 ...

  7. 差分约束系统 + spfa(A - Layout POJ - 3169)

    题目链接:https://cn.vjudge.net/contest/276233#problem/A 差分约束系统,假设当前有三个不等式 x- y <=t1 y-z<=t2 x-z< ...

  8. 【差分约束系统/SPFA】POJ3169-Layout

    [题目大意] n头牛从小到大排,它们之间某些距离不能大于一个值,某些距离不能小于一个值,求第一头牛和第N头牛之间距离的最大值. [思路] 由题意可以得到以下不等式d[AL]+DL≥d[BL]:d[BD ...

  9. 【差分约束系统】【spfa】UVALive - 4885 - Task

    差分约束系统讲解看这里:http://blog.csdn.net/xuezhongfenfei/article/details/8685313 模板题,不多说.要注意的一点是!!!对于带有within ...

  10. 【bzoj3436】小K的农场 差分约束系统+最长路-Spfa

    原文地址:http://www.cnblogs.com/GXZlegend/p/6801470.html 题目描述 背景 小K是个特么喜欢玩MC的孩纸... 描述 小K在MC里面建立很多很多的农场,总 ...

随机推荐

  1. Docker实践之06-访问仓库

    目录 什么是仓库 一.Docker Hub 注册 登录 拉取镜像 推送镜像 自动创建 二.私有仓库 Docker Registry 安装Docker Registry 在私有仓库上传/搜索/下载镜像 ...

  2. mac更新系统后,提示xcrun的错误问题

    pycharm运行代码终端报错: xcrun: error: invalid active developer path (/Library/Developer/CommandLineTools), ...

  3. Java面向对象之接口和抽象类的区别一目了然

    介绍 相信对于Java面向对象部分,很多人很长一段时间对于接口和抽象类的区别,使用场景都不是很熟悉,同是作为抽象层重要的对象,工作中到底什么情况下使用抽象类,不是很清楚.本文就一次性把这些概念一次性说 ...

  4. spark conf、config配置项总结

    1.structured-streaming的state 配置项总结 Config Name Description Default Value spark.sql.streaming.stateSt ...

  5. vscode编译多个C/CPP文件

    修改vscode里面的tasks.json文件,下面是修改好的,参考 "args": [ "-fdiagnostics-color=always", " ...

  6. RocketMQ(9) 消息堆积与消费延迟

    消息堆积与消费延迟 1 概念 消息处理流程中,如果Consumer的消费速度跟不上Producer的发送速度,MQ中未处理的消息会越来越多(进的多出的少),这部分消息就被称为堆积消息.消息出现堆积进而 ...

  7. Java 设计模式简介

    设计模式简介 设计模式(Design pattern)代表了最佳的实践,通常被有经验的面向对象的软件开发人员所采用.设计模式是软件开发人员在软件开发过程中面临的一般问题的解决方案.这些解决方案是众多软 ...

  8. 6、zookeeper应用场景-分布式唯一ID

    分布式唯一id案例 原理:使用zookeeper有序节点,节点后会加上有序的id,用这个id来当唯一ID 在过去的单库单表型系统中,通常第可以使用数据库字段自带的auto_ increment属性来自 ...

  9. MVVM --- 实现多层级通知

    引言 在实际开发场景中,当ViewModel内的一个属性是一个 ObservableCollection<T> 或者是一个多层级 class 的时候,有可能有的需求需要 Observabl ...

  10. 安装Typora+PicGo七牛云图床问题解决

    遇到两个问题 第一个安装PicGo软件打不开只在后台运行,卸载.重启都试过没用,按照默认安装路径到c盘才能打开软件. 第二个问题"设定存储区域"输入z0不行,需要输入cn-east ...