题目链接

题目

题目描述

Farmer John's N (2 <= N <= 10,000) cows, conveniently numbered 1..N, are fluent in some M (1 <= M <= 30,000) languages, also conveniently numbered from 1..M. Cow i can speak in KiK_iKi (1 <= \(K_i\) <= M) languages, namely \(L_{i_1}, L_{i_2},..., L_{i_{K_i}}\) (1 <= \(L_{i_j}\) <= M). FJ's cows aren't THAT smart, so the sum of \(K_i\) over all cows i is at most 100,000.

Two cows can't directly talk to each other unless both speak a common language. However, cows can pass messages along, translating if necessary. In other words, cows A and B can have a conversation if and only if there exists a sequence of cows \(T_1, T_2, ..., T_k\)​ such that A and \(T_1\)​ share a language, \(T_1\)​ and \(T_2\)​ share a language, etc., and \(T_k\)​ and B share a language.

Farmer John wishes that his cows could be even more social, so he wants all his cows to be able to socialize with any other cow. He can buy books to teach any one of his cows any language he pleases. Being a fairly frugal farmer, FJ wants to purchase the minimum number of books necessary to enable all of his cows to speak to each other. Help him determine:

* The minimum number of books he must purchase

* Any set of books assigned to cows in any order which will help him meet this goal; a program will grade your output.

By way of example, suppose there are three cows named Alberta, Bessie, and Contessa along with three languages denoted as #1, #2, and #3. Alberta can speak languages #2 and #3, Bessie can speak language #2, and Contessa can speak language #1. Currently, Alberta and Bessie can talk to each other, but Contessa is left alone.

#1 #2 #3

Alberta x x

Bessie x

Contessa x

FJ wants to fix this situation, so he can buy Contessa a book to teach her language #2. This will ensure all cows speak the same language, so they can all communicate with one another.

Note that an alternate solution exists: instead, FJ could buy

Contessa a book to teach her language #3. Not all cows would speak the same language, but this would still be a valid solution because Contessa could communicate through Alberta (who also speaks language #3) if she wants to talk to Bessie. Other alternatives exist, and any valid alternate solution will also be accepted.

输入描述

  • Line 1: Two space-separated integers: N and M
  • Lines 2..N+1: Line i+1 describes the languages that cow i can speak with Ki+1K_i+1Ki+1 space-separated integers: \(K_i\), \(L_{i_1}, L_{i_2},..., L_{i_{K_i}}\).

输出描述

  • Line 1: A single integer that is the minimum number of books that FJ must purchase.
  • Lines 2..B+1: Line i+1 contains two space-separated integers: the language id # and the id # of the cow to receive book i. If multiple solutions exist, print any one.

示例1

输入

3 3
2 3 2
1 2
1 1

输出

1

题解

知识点:并查集。

本题显然用并查集,但需要做扩展域。

牛与牛之间关系不是简单联系的,而是通过语言种类作为桥梁。因此将语言种类集合并入牛集合作为合并的桥梁集合,只要牛通过语言桥梁集合与另一只牛连通,即能够交流。

具体上,在牛的集合 \([1,n]\) 后加入语言集合 \([n+1,m]\) 即可,每次合并务必用牛作为根节点,是为了防止有些语言所有牛不会单独成为集合,干扰有效集合计数。只要把牛作为根节点,就只需要在 \([1,n]\) 计数,不会产生桥梁集合单独存在的问题。

最后牛区间中不同集合的数量减一,就是要连接的(牛->语言)边的数量。

时间复杂度 \(O(nk\log (n+m)+m)\)

空间复杂度 \(P(n+m)\)

代码

#include <bits/stdc++.h>

using namespace std;

int fa[40007];///牛与书的扩展集合

int find(int x) {
return fa[x] == x ? x : fa[x] = find(fa[x]);
} void merge(int x, int y) {
fa[find(y)] = find(x);
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n, m;
cin >> n >> m;
for (int i = 1;i <= n + m;i++) fa[i] = i;
for (int i = 1;i <= n;i++) {
int k;
cin >> k;
while (k--) {
int l;
cin >> l;
merge(i, l + n);
}
}
int ans = 0;
for (int i = 1;i <= n;i++) {///语言可能多出来
if (fa[i] == i) ans++;
}
cout << ans - 1 << '\n';
return 0;
}

NC24608 [USACO 2011 Ope S]Learning Languages的更多相关文章

  1. BZOJ3296: [USACO2011 Open] Learning Languages

    3296: [USACO2011 Open] Learning Languages Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 81  Solved: ...

  2. CodeForces 277A Learning Languages (并检查集合)

    A. Learning Languages time limit per test:2 seconds memory limit per test:256 megabytes The "Be ...

  3. BZOJ3296:Learning Languages(简单并查集)

    3296: [USACO2011 Open] Learning Languages Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 436  Solved ...

  4. [Codeforces Round #170 Div. 1] 277A Learning Languages

    A. Learning Languages time limit per test:2 seconds memory limit per test:256 megabytes input standa ...

  5. C. Learning Languages 求联通块的个数

    C. Learning Languages 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring&g ...

  6. NC25136 [USACO 2006 Ope B]Cows on a Leash

    NC25136 [USACO 2006 Ope B]Cows on a Leash 题目 题目描述 给定如图所示的若干个长条.你可以在某一行的任意两个数之间作一条竖线,从而把这个长条切开,并可能切开其 ...

  7. [USACO 2011 Nov Gold] Cow Steeplechase【二分图】

    传送门:http://www.usaco.org/index.php?page=viewproblem2&cpid=93 很容易发现,这是一个二分图的模型.竖直线是X集,水平线是Y集,若某条竖 ...

  8. [USACO 2011 Nov Gold] Above the Median【逆序对】

    传送门:http://www.usaco.org/index.php?page=viewproblem2&cpid=91 这一题我很快的想出了,把>= x的值改为1,< x的改为- ...

  9. USACO 2011 February Silver Cow Line /// 康拓展开模板题 oj22713

    题目大意: 输入n k,1-n的排列,k次操作 操作P:输入一个m 输出第m个排列 操作Q:输入一个排列 输出它是第几个排列 Sample Input 5 2P3Q1 2 5 3 4 Sample O ...

  10. Codeforces 278C Learning Languages(并查集)

    题意抽象出来就是求联通块的个数吧,然后添加最少边使图联通. 注意所有人都不会任何语言的时候,答案是n而不是n-1. #include<algorithm> #include<iost ...

随机推荐

  1. 【C/C++】宏参数多对一和宏部分替换

    宏参数多对一:使用分号分隔多参数 宏部分替换:替换需要转换的再与后续宏接续 #include <stdio.h> #define _MESS_FAILED() printf("% ...

  2. [转帖]快速入门:在 Red Hat 上安装 SQL Server 并创建数据库

    https://learn.microsoft.com/zh-cn/sql/linux/quickstart-install-connect-red-hat?view=sql-server-linux ...

  3. [转帖]《Linux性能优化实战》笔记(20)—— 使用 tcpdump 和 Wireshark 分析网络流量

    tcpdump 和 Wireshark 是最常用的网络抓包和分析工具,更是分析网络性能必不可少的利器. tcpdump 仅支持命令行格式使用,常用在服务器中抓取和分析网络包.Wireshark 除了可 ...

  4. 【转帖】linux 软连接的使用

    https://www.cnblogs.com/sueyyyy/p/10985443.html 软连接是linux中一个常用命令,它的功能是为某一个文件在另外一个位置建立一个同不的链接. 具体用法是: ...

  5. [转帖]第七篇:双管齐下,JVM内部优化与JVM性能调优

    文章目录 一.前言 二.编译时优化 2.1 Javac编译器 2.2 Java语法糖 2.2.1 泛型和泛型擦除 2.2.2 自动装箱.自动拆箱.遍历循环 2.2.3 条件编译 三.运行时优化(核心: ...

  6. [转帖]一个小技巧解决笔记本HDMI接口失灵

      https://baijiahao.baidu.com/s?id=1738289993804283647&wfr=spider&for=pc 现如今笔记本的接口是越来越多,哪怕是标 ...

  7. [转帖]linux的硬链接和软连接的区别

    Linux中有两种链接文件: 1)软链接(符号链接symbol),等同于Windows中快捷方式 ln -s 源文件名 符号链接文件名,源文件名和符号链接文件名是主从关系,源被删了,符号链接也就失效了 ...

  8. DashBoard in k8s 简单使用

    DashBoard in k8s 简单使用 第一部分 拉取分发镜像 没办法的事情,公司网络实在是太垃圾了, dockerhub 又不让多次docker pull 找一台网络表好的机器 执行如下命令: ...

  9. 学习MySQL,创建表,数据类型

    连接本地mysql语句 mysql -hlocalhost -uroot -proot MySQL通用语法 DDL数据库操作 DDL:数据定义语言,用来定义数据库对象(数据库,表,字段) 查询所有数据 ...

  10. C#使用命令行打开diskpart修改盘符

    参考链接: https://www.cnblogs.com/k98091518/p/6019296.html https://learn.microsoft.com/zh-cn/windows-ser ...