机器学习策略篇:详解可避免偏差(Avoidable bias)
可避免偏差
如果希望学习算法能在训练集上表现良好,但有时实际上并不想做得太好。得知道人类水平的表现是怎样的,可以确切告诉算法在训练集上的表现到底应该有多好,或者有多不好,让我说明是什么意思吧。
经常使用猫分类器来做例子,比如人类具有近乎完美的准确度,所以人类水平的错误是1%。在这种情况下,如果您的学习算法达到8%的训练错误率和10%的开发错误率,那么也许想在训练集上得到更好的结果。所以事实上,算法在训练集上的表现和人类水平的表现有很大差距的话,说明的算法对训练集的拟合并不好。所以从减少偏差和方差的工具这个角度看,在这种情况下,会把重点放在减少偏差上。需要做的是,比如说训练更大的神经网络,或者跑久一点梯度下降,就试试能不能在训练集上做得更好。
但现在看看同样的训练错误率和开发错误率,假设人类的表现不是1%,就把它抄写过来。但知道,在不同的应用或者说用在不同的数据集上,假设人类水平错误实际上是7.5%,也许的数据集中的图像非常模糊,即使人类都无法判断这张照片中有没有猫。这个例子可能稍微更复杂一些,因为人类其实很擅长看照片,分辨出照片里有没有猫。但就为了举这个例子,比如说的数据集中的图像非常模糊,分辨率很低,即使人类错误率也达到7.5%。在这种情况下,即使的训练错误率和开发错误率和其他例子里一样,就知道,也许的系统在训练集上的表现还好,它只是比人类的表现差一点点。在第二个例子中,可能希望专注减少这个分量,减少学习算法的方差,也许可以试试正则化,让的开发错误率更接近的训练错误率。
所以在之前的博客关于偏差和方差的讨论中,主要假设有一些任务的贝叶斯错误率几乎为0。所以要解释这里发生的事情,看看这个猫分类器,用人类水平的错误率估计或代替贝叶斯错误率或贝叶斯最优错误率,对于计算机视觉任务而言,这样替代相当合理,因为人类实际上是非常擅长计算机视觉任务的,所以人类能做到的水平和贝叶斯错误率相差不远。根据定义,人类水平错误率比贝叶斯错误率高一点,因为贝叶斯错误率是理论上限,但人类水平错误率离贝叶斯错误率不会太远。所以这里比较意外的是取决于人类水平错误率有多少,或者这真的就很接近贝叶斯错误率,所以假设它就是,但取决于认为什么样的水平是可以实现的。
在这两种情况下,具有同样的训练错误率和开发错误率,决定专注于减少偏差的策略或者减少方差的策略。那么左边的例子发生了什么?
8%的训练错误率真的很高,认为可以把它降到1%,那么减少偏差的手段可能有效。而在右边的例子中,如果认为贝叶斯错误率是7.5%,这里使用人类水平错误率来替代贝叶斯错误率,但是认为贝叶斯错误率接近7.5%,就知道没有太多改善的空间了,不能继续减少的训练错误率了,也不会希望它比7.5%好得多,因为这种目标只能通过可能需要提供更进一步的训练。而这边,就还(训练误差和开发误差之间)有更多的改进空间,可以将这个2%的差距缩小一点,使用减少方差的手段应该可行,比如正则化,或者收集更多的训练数据。
所以要给这些概念命名一下,这不是广泛使用的术语,但觉得这么说思考起来比较流畅。就是把这个差值,贝叶斯错误率或者对贝叶斯错误率的估计和训练错误率之间的差值称为可避免偏差,可能希望一直提高训练集表现,直到接近贝叶斯错误率,但实际上也不希望做到比贝叶斯错误率更好,这理论上是不可能超过贝叶斯错误率的,除非过拟合。而这个训练错误率和开发错误率之前的差值,就大概说明的算法在方差问题上还有多少改善空间。
可避免偏差这个词说明了有一些别的偏差,或者错误率有个无法超越的最低水平,那就是说如果贝叶斯错误率是7.5%。实际上并不想得到低于该级别的错误率,所以不会说的训练错误率是8%,然后8%就衡量了例子中的偏差大小。应该说,可避免偏差可能在0.5%左右,或者0.5%是可避免偏差的指标。而这个2%是方差的指标,所以要减少这个2%比减少这个0.5%空间要大得多。而在左边的例子中,这7%衡量了可避免偏差大小,而2%衡量了方差大小。所以在左边这个例子里,专注减少可避免偏差可能潜力更大。
所以在这个例子中,当理解人类水平错误率,理解对贝叶斯错误率的估计,就可以在不同的场景中专注于不同的策略,使用避免偏差策略还是避免方差策略。在训练时如何考虑人类水平表现来决定工作着力点,具体怎么做还有更多微妙的细节,接下来会越来越深入了解人类水平表现的真正意义。
机器学习策略篇:详解可避免偏差(Avoidable bias)的更多相关文章
- PHP函数篇详解十进制、二进制、八进制和十六进制转换函数说明
PHP函数篇详解十进制.二进制.八进制和十六进制转换函数说明 作者: 字体:[增加 减小] 类型:转载 中文字符编码研究系列第一期,PHP函数篇详解十进制.二进制.八进制和十六进制互相转换函数说明 ...
- 走向DBA[MSSQL篇] 详解游标
原文:走向DBA[MSSQL篇] 详解游标 前篇回顾:上一篇虫子介绍了一些不常用的数据过滤方式,本篇详细介绍下游标. 概念 简单点说游标的作用就是存储一个结果集,并根据语法将这个结果集的数据逐条处理. ...
- Scala进阶之路-Scala函数篇详解
Scala进阶之路-Scala函数篇详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.传值调用和传名调用 /* @author :yinzhengjie Blog:http: ...
- CentOS 7 下编译安装lnmp之PHP篇详解
一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:centos-release-7-5.1804.el7.centos.x86_64 二.PHP下载 官网 http ...
- CentOS 7 下编译安装lnmp之MySQL篇详解
一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:centos-release-7-5.1804.el7.centos.x86_64 二.MySQL下载 MySQL ...
- CentOS 7 下编译安装lnmp之nginx篇详解
一.安装环境 宿主机=> win7,虚拟机 centos => 系统版本:CentOS Linux release 7.5.1804 (Core),ip地址 192.168.1.168 ...
- Canal:同步mysql增量数据工具,一篇详解核心知识点
老刘是一名即将找工作的研二学生,写博客一方面是总结大数据开发的知识点,一方面是希望能够帮助伙伴让自学从此不求人.由于老刘是自学大数据开发,博客中肯定会存在一些不足,还希望大家能够批评指正,让我们一起进 ...
- java提高篇-----详解java的四舍五入与保留位
转载:http://blog.csdn.net/chenssy/article/details/12719811 四舍五入是我们小学的数学问题,这个问题对于我们程序猿来说就类似于1到10的加减乘除那么 ...
- 如何正确删除VMare虚拟机上的系统机器(图文详解)
不多说,直接上干货! 打开虚拟机进入操作系统列表 在操作系统列表,点击要删除的操作系统,如win7, 点击要删除的操作系统后,在主菜单中找到虚拟机. 如图所示,从磁盘中彻底删除. 是 即,成功从虚拟机 ...
- 组件--Fragment(碎片)第二篇详解
感觉之前看的还是不清楚,重新再研究了一次 Fragment常用的三个类: android.app.Fragment 主要用于定义Fragment android.app.FragmentManager ...
随机推荐
- linux 性能自我学习 ———— cpu 快速定位问题 [六]
前言 主要介绍一下cpu如何快速定位问题. 正文 cpu 的一些性能指标: 1. cpu 使用率 cpu 使用率描述了非空闲时间占总cpu时间的百分比,根据cpu上运行任务的不同,又被分为用户cpu. ...
- nginx 使用下的一些基本概念
前言 以前的nginx总结的概念! 正文 来看下百度的概念: Nginx (engine x) 是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务. Nginx ...
- linux 忘记密码怎么破?
前言 适合硬件在自己旁边的,不适合云服务器,云服务器很方便的,可以直接重置密码,因为云服务器都是虚拟机. 正文 1.步骤 进入到可以看到节目的视图,按下esc键进入下面的视图! 2.接着进入下面的界面 ...
- kkfileview搭建实战
kkfileview可以与nginx搭建的文件服务器配合实现预览工作,也可以通过自身的文件系统机制免搭建nginx文件服务器来实现预览工作. nginx 创建nginx # 创建初始容器,获得容器内部 ...
- Kotlin泛型的高级特性
Kotlin中是可以将内联函数中的泛型进行实化的. 那么具体该怎么写才能将泛型实化呢?首先,该函数必须是内联函数才行,也就是要用inline 关键字来修饰该函数.其次,在声明泛型的地方必须加上reif ...
- CSS 样式清单整理(二)
16.元素占满整个屏幕 heigth如果使用100%,会根据父级的高度来决定,所以使用100vh单位. .dom{ width:100%; height:100vh; } 17.CSS实现文本两端对齐 ...
- eclipse 配置tomcat(更新了比较详细的版本)
eclipse 配置tomcat 打开eclipse,在上栏找到Window,点开找到preferences,点击,就有一个弹框出现 然后找到server,点开找到runtime environmen ...
- DTCC 2020 | 阿里云程实:云原生时代的数据库管理
简介: 随着云原生技术的不断发展,数据库也逐渐进入了云原生时代.在云原生时代,如何高效.安全且稳定地管理云上与云下的数据库成为摆在企业面前的一大难题.在第十一届中国数据库技术大会(DTCC2020)上 ...
- 殷浩详解DDD:如何避免写流水账代码?
简介: 在日常工作中我观察到,面对老系统重构和迁移场景,有大量代码属于流水账代码,通常能看到开发在对外的API接口里直接写业务逻辑代码,或者在一个服务里大量的堆接口,导致业务逻辑实际无法收敛,接口复用 ...
- LVGL学习资料
一.资料整理 官网:https://lvgl.io/ 使用手册: 官方的使用手册是英文版的,百问网将其翻译成中文版的文档.地址如下: 官方使用文档:https://docs.lvgl.io/maste ...