2018/1/28 每日一学 单源最短路的SPFA算法以及其他三大最短路算法比较总结
刚刚AC的pj普及组第四题就是一种单源最短路。
我们知道当一个图存在负权边时像Dijkstra等算法便无法实现;
而Bellman-Ford算法的复杂度又过高O(V*E),SPFA算法便派上用场了。
其实SPFA 是用队列的优化,过程详见下图(PS:图片转自网络)
好了,以上图片基本已经说明的SPFA的过程,下面就是代码实现:
模板如下:
void spfa(){ ; i<=n; i++) dis[i]=INF; //初始化 dis[start]=; inq[start]=; q.push(start); int i, v; while (!q.empty){ v=q.front(); // 取队首节点 q.pop(); inq[v]=; //释放节点,因为这节点可能下次被其他节点松弛,重新入队 ; i<=n; i++) //枚举所有顶点 && dis[i]>dis[v]+a[v][i]){ //判断 dis[i] = dis[v]+a[v][i]; //修改 if (!inq[i]){ // 如果扩展结点i不在队列中,入队 q.push(i); vis[i]=; } } } }
可以看到,因为维护队列,和bfs有其曲同工之妙,但有一点不同!!!
bfs一旦入队,哪怕后面出队也无法在入队,而SPFA不同。
从数组名vis[i](BFS),inq[i](SPFA)可以看出定义不同。
那么对于有负权边,SPFA时间会大大增加……
不难想到DFS会不会快一点(好吧,既然都说了,肯定快,233)。
大约是O(E)。
代码如下:
void spfa(now){//DFS ; i<=edge[now]; i++) //枚举从顶点now发出的边 if (dis[to[now][i]>dis[now]+a[now][to[now][i]]){ dis[to[now][i]=dis[now]+a[now][to[now][i]]; spfa(to[now][i]);//继续DFS } }
我们知道DFS其实是遍历到终点才换成另一条路,因此可以用来判断负权边!!
只需判断是否回到之前的节点即可,可以用 vis[i] bool数组记录。
再看看Bellman-Ford算法,思路太简单,枚举点和边,就是时间比较长,为O(VE)。
代码如下:(转自百度百科)
#include<iostream> #include<cstdio> using namespace std; #define MAX 0x3f3f3f3f #define N 1010 int nodenum, edgenum, original; //点,边,起点 typedef struct Edge //边 { int u, v; int cost; }Edge; Edge edge[N]; int dis[N], pre[N]; bool Bellman_Ford() { ; i <= nodenum; ++i) //初始化 dis[i] = (i == original ? : MAX); ; i <= nodenum - ; ++i) ; j <= edgenum; ++j) if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) //松弛(顺序一定不能反~) { dis[edge[j].v] = dis[edge[j].u] + edge[j].cost; pre[edge[j].v] = edge[j].u; } ; //判断是否含有负权回路 ; i <= edgenum; ++i) if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost) { flag = ; break; } return flag; } void print_path(int root) //打印最短路的路径(反向) { while(root != pre[root]) //前驱 { printf("%d-->", root); root = pre[root]; } if(root == pre[root]) printf("%d\n", root); } int main() { scanf("%d%d%d", &nodenum, &edgenum, &original); pre[original] = original; ; i <= edgenum; ++i) { scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].cost); } if(Bellman_Ford()) ; i <= nodenum; ++i) //每个点最短路 { printf("%d\n", dis[i]); printf("Path:"); print_path(i); } else printf("have negative circle\n"); ; }
看到核心部分,不难想到外层i跟内层循环无关,因此可以优化,即如果内层无松弛,可以提前结束!
这样一来,速度还是可以的……
之后我们看看dijkstra算法,其实就是贪心。
dis数组用来储存起始点到其他点的最短路。
转移方程为:
dis[i]=min(dis[i],dis[j]+w[j][i]|j为i能到达的点)
一开始dis[i]=INF,dis[start]=0;
很显然,不能处理有负边的情况……
时间为(V^2).两层循环解决。
注意每次选用没更新过的离源点最近的点对外拓展。
代码如下:
#include<stdio.h> #include<stdlib.h> #define INF 1<<28 #define N 1000+5 int a[N][N]; int d[N]; bool vis[N]; int i,j,k; int m;//m代表边数 int n;//n代表点数 int main() { scanf("%d%d",&n,&m); int mn; int x,y,z; ;i<=m;i++) { scanf("%d%d%d",&x,&y,&z); a[x][y]=a[y][x]=z; } ;i<=n;i++) d[i]=INF; ;i<=m;i++) { mn=INF; ;j<=n;j++) if(!vis[j]&&d[j]<mn) { mn=d[j]; k=j; } vis[k]=; ;j<=n;j++) &&d[j]>d[k]+a[k][j]) d[j]=d[k]+a[k][j]; } ;i<=n;i++) printf("%d ",d[i]); ; }
最后用最最最最……最智障的floyd算法结束今天学习(完全是为了凑齐四种算法,基本没啥可说)
直接看核心代码
; k<=n; k++) ; i<=n; i++) ; j<=n; j++) { if(w[i][j]>w[i][k]+w[k][j]) w[i][j]=map1[i][k]+w[k][j]; }
注意最外层是循环中间的点!!!
其他就比较简单,不解释了,ok!
2018/1/28 每日一学 单源最短路的SPFA算法以及其他三大最短路算法比较总结的更多相关文章
- 2018/03/08 每日一学PHP 之 常量defind 和 const区别
常量defind 和 const区别 什么是常量? 如字面理解的,在脚本执行期间不可改变的的量. 定义一个常量应该注意的事项? 1:常量默认大小写敏感,错误的大小写不会被识别为常量. 2:常量只能是标 ...
- 2018/1/27 每日一学 最长不降序子序列的O(n*logn)算法
手动维护一个数组模拟即可,233-- 可以使用algorithm中的lower_bound(相当于二分) 代码如下: #include<cstdio> #include<algori ...
- 2018/05/02 每日一学Linux 之 .bash_profile和.bashrc的区别
最近一直在学习其他,导致博客就疏忽了,很不好(其实就是自己懒了......). -- 为什么要使用 .bash_profile和.bashrc ? 在平常的使用中,有些文件夹或者命令很长,在执行时需要 ...
- 2018/04/18 每日一学Linux 之 ssh关闭密码登录
在平常工作中,常常需要关闭 SSH 的密码登录,只留 SSH 证书登录. 好处显而易见,避免了经常输入密码导致的密码泄露,和设置密码导致被暴力破解的可能性. -- 方法也很简单,首先 你是可以 登录 ...
- 2018/03/28 每日一个Linux命令 之 mkdir/rmdir
用于建立空文件夹和删除文件夹 -- 两命令重要参数 -p 递归建立/删除 -- 例如 mkdir -p demo1/demo2/demo3 建立demo3空文件夹,如果demo1/demo2没建立也建 ...
- 2018/03/10 每日一学PHP 之 修饰符 public/private/protected
对于面向对象 修饰符的使用是我们最常用,也是很容易忽略的小细节. 对于编程来说,把握好每一个小细节,就能构造出漂亮,优雅的程序. public 使用最多的修饰符,公共方法,允许所有访问,就像一个公交车 ...
- 2018/03/09 每日一学PHP 之 require_once require include include_once 包含文件的区别
require_once require include include_once 方法的区别 对于包含文件来说,如果只是使用框架来说的话,应该会很少碰到,因为框架底层对于文件的引用等做了很好的封装, ...
- 【luogu P3371 单源最短路径 】 模板 SPFA优化
无优化:500ms deque优化:400ms #include <queue> #include <cstdio> #include <cstring> #inc ...
- 【luogu P3371 单源最短路径】 模板 SPFA
题目链接:https://www.luogu.org/problemnew/show/P3371 我永远都喜欢Flyod.dijkstra + heap.SPFA #include <cstdi ...
随机推荐
- python模块:shelve
shelve 1)模块功能:以 key - value 的方式存储数据. 2)写数据 >>> import shelve >>> db = shelve.open( ...
- JavaScript 遍历多维数组
基于ECMAScript5提供遍历数组的forEach方法仅能遍历一维数组,没有提供循环遍历多维数组的方法,所以根据白鹤翔老师的讲解,实现如下遍历多维数组的each方法,以此遍历多维数组. <s ...
- jsp 之 解决mysql不是内部或外部命令问题
安装Mysql后,当我们在cmd中敲入mysql时会出现'Mysql'不是内部或外部命令,也不是可运行的程序或其处理文件. 打开我的电脑在我的电脑右键中选择属性,然后单击选择高级系统设置. 在系统属性 ...
- iOS项目开发常用功能静态库
YHDeveloperTools iOS项目开发常用功能静态库 查看源码 功能方法: 1.字符检查 [NSString checkStringWithType:Email andTargetStrin ...
- 3、ABPZero系列教程之拼多多卖家工具 项目修改及优化
本篇内容杂而简单,不需要多租户.不需要多语言.使用MPA(多页面).页面加载速度提升…… 刚登录系统会看到如下界面,这不是最终想要的效果,以下就一一来修改. 不需要多租户 AbpZeroTemplat ...
- tornado SSL 证书获取与服务器配置
转载注明出处: http://www.cnblogs.com/ityoung/p/8296088.html 自动化测试/持续集成/测试开发 QQ交流群: 70160503 服务端生成证书 进入 ope ...
- 定义一个数,它可能为正 也可能为负 var num = Math.pow(-1,parseInt(Math.random() * 2) + 1);
// 定义一个随机数范围从0 ~页面宽度 var x = parseInt(Math.random() * myCanvas.width); // 定义一个随机数 范围从0 ~页面高度 var y = ...
- React Native随笔——组件TextInput
一.实例 先看一下我要做的搜索框的样子 需要一个Image,和一个TextInput 去掉默认下划线 underlineColorAndroid='transparent' 设置光标颜色 select ...
- 个人项目--“”小鱼企业级开发系统“”Svn地址分享
由于精力有限,博主现在只维护这一个系统,会不时的更新代码提交. ""小鱼企业级开发系统""的Svn地址:http://code.taobao.org/svn/S ...
- MacBook安装Win10
// 这是一篇导入进来的旧博客,可能有时效性问题. (一) 确认你的机型 以下机型支持: ü 安装64 位版本Win10 ü 不使用U盘安装Windows l MacBook(Retina 显 ...