最小生成树算法

一个连通图可能有多棵生成树,而最小生成树是一副连通加权无向图中一颗权值最小的生成树,它可以根据Prim算法和Kruskal算法得出,这两个算法分别从点和边的角度来解决。

Prim算法

理解

Prim算法从单一顶点开始,其按照以下步骤逐步扩大树中所包含顶点的数目,直到遍及连通图的所有顶点。

  1. 输入:一个加权连通图,其中顶点集合为V,边集合为E;
  2. 初始化:Vn = {x},其中x为集合V中的任一节点(起始点),Enew = {};
  3. 重复下列操作,直到Vn = V:
    1. 在集合E中选取权值最小的边(u, v),其中u为集合Vn中的元素,而v则是V中没有加入Vn的顶点(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
    2. 将v加入集合Vn中,将(u, v)加入集合En中;
  4. 输出:使用集合Vn和En来描述所得到的最小生成树。

以下面这张图作为例子,表格中的Vertex、Kown、Cost、Path分别表示顶点信息、是否访问过,权值,到达路径;

我们随机的选择顶点0作为起点,其执行步骤为:

步骤 选中结点
顶点0作为起始点 0
根据(6, 7, 8)的方案选中6 1
根据顶点1能够到达的权值(7, 4, 3)和顶点0能够到达的权值(7, 8)中选择3 5
根据顶点5能够到达的权值(8)和根据顶点1能够到达的权值(7, 4)和顶点0能够到达的权值(7, 8)中选择4 6
根据顶点6能够到达的权值(6, 7)和顶点0能够到达的权值(7)中选择6 2
根据顶点0能够到达的权值(7)和顶点6能够到达的权值(7)中选择7 4
根据顶点6能够到达的权值(7)选择7 7
根据顶点7能够到达的权值(2)选择2 3
全部结点都访问过,退出

最终得到下面的结果,其中Path中的-1表示其作为起始点;

实现

根据前面的那幅图来实现,如下:

class MST(object):
def __init__(self, graph):
self.graph = graph
self.N = len(self.graph)
pass
def prim(self, start):
index = start
cost, path = [0] * self.N, [0] * self.N
# 初始化起点
known = [x for x in map(lambda x: True if x == start else False, [x for x in range(self.N)])]
path[start] = -1
for i in range(self.N):
cost[i] = self.graph[start][i]
# 遍历其余各个结点
for i in range(1, self.N):
mi = 1e9
# 找出相对最小权重的结点
for j in range(self.N):
if not known[j] and mi > cost[j]:
mi, index = cost[j], j
# 计算路径值
for j in range(self.N):
if self.graph[j][index] == mi:
path[index] = j
known[index] = True
# 更新index连通其它结点的权重
for j in range(self.N):
if not known[j] and cost[j] > self.graph[index][j]:
cost[j] = self.graph[index][j]
print(path)
# 图用临接矩阵表示
MST([
[1e9, 6, 8, 1e9, 7, 1e9, 1e9, 1e9],
[6, 1e9, 7, 1e9, 1e9, 3, 4, 1e9],
[8, 7, 1e9, 1e9, 1e9, 1e9, 6, 1e9],
[1e9, 1e9, 1e9, 1e9, 1e9, 1e9, 1e9, 2],
[7, 1e9, 1e9, 1e9, 1e9, 1e9, 1e9, 1e9],
[1e9, 3, 1e9, 1e9, 1e9, 1e9, 1e9, 9],
[1e9, 4, 6, 1e9, 1e9, 1e9, 1e9, 7],
[1e9, 1e9, 1e9, 2, 1e9, 9, 7, 1e9],
]).prim(0)

path结果为:[-1, 0, 6, 7, 0, 1, 1, 6]

Kruskal算法

理解

构造一个只含n个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树的根节点,则它是一个含有n棵树的森林 。之后,从图的边集中选取一条权值最小的边,若该边的两个顶点分属不同的树 ,则将其加入子图,也就是这两个顶点分别所在的 两棵树合成一棵树;反之,若该边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至森林只有一棵树。kruskal算法能够在并查集的基础很快的实现。

以下面这张图作为例子,其中左边的表格是一个并查集,表示可以连通的结点。我们首先要根据权值对每条边进行排序,接着开始处理每一条边的情况。

最终得到下面的结果图:

实现

因为我们要处理边,所以需要建立边的数据结构,并且要从给定的图中获取每一条边的数据

class Edge(object):
def __init__(self, start, end, weight):
self.start = start
self.end = end
self.weight = weight
def getEdges(self):
edges = []
for i in range(self.vertex):
for j in range(i+1, self.vertex):
if self.graph[i][j] != 1e9:
edge = Edge(i, j, self.graph[i][j])
edges.append(edge)
return edges

接下来就是kruskal函数:

    def kruskal(self):
union = dict.fromkeys([i for i in range(self.vertex)], -1) # 辅助数组,判断两个结点是否连通
self.edges = self.getEdges()
self.edges.sort(key=lambda x: x.weight)
res = []
def getend(start):
while union[start] >= 0:
start = union[start]
return start
for edge in self.edges:
# 找到连通线路的最后一个结点
n1 = getend(edge.start)
n2 = getend(edge.end)
# 如果为共同的终点则不处理
if n1 != n2:
print('{}----->{}'.format(n1, n2))
(n1, n2) = (n2, n1) if union[n1] < union[n2] else (n1, n2)
union[n2] += union[n1]
union[n1] = n2
res.append(edge)
print(union.values())

其中union打印出来的结果和图中是一致的,为[3, 3, 5, 6, 6, 6, -8, 3]

最小生成树之Prim算法和Kruskal算法的更多相关文章

  1. java实现最小生成树的prim算法和kruskal算法

    在边赋权图中,权值总和最小的生成树称为最小生成树.构造最小生成树有两种算法,分别是prim算法和kruskal算法.在边赋权图中,如下图所示: 在上述赋权图中,可以看到图的顶点编号和顶点之间邻接边的权 ...

  2. 【数据结构】最小生成树之prim算法和kruskal算法

    在日常生活中解决问题经常需要考虑最优的问题,而最小生成树就是其中的一种.看了很多博客,先总结如下,只需要您20分钟的时间,就能完全理解. 比如:有四个村庄要修四条路,让村子能两两联系起来,这时就有最优 ...

  3. 最小生成树之 prim算法和kruskal算法(以 hdu 1863为例)

    最小生成树的性质 MST性质:设G = (V,E)是连通带权图,U是V的真子集.如果(u,v)∈E,且u∈U,v∈V-U,且在所有这样的边中, (u,v)的权c[u][v]最小,那么一定存在G的一棵最 ...

  4. 最小生成树(prim算法和kruskal算法)

    学习博客:https://www.cnblogs.com/zhangming-blog/p/5414514.html 其实就是加点法:从不属于这个集合的点中找从本集合可以找到的最小边,加入本集合 看代 ...

  5. 转载:最小生成树-Prim算法和Kruskal算法

    本文摘自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 最小生成树-Prim算法和Kruskal算法 Prim算 ...

  6. 最小生成树——Prim算法和Kruskal算法

    洛谷P3366 最小生成树板子题 这篇博客介绍两个算法:Prim算法和Kruskal算法,两个算法各有优劣 一般来说当图比较稀疏的时候,Kruskal算法比较快 而当图很密集,Prim算法就大显身手了 ...

  7. 最小生成树Prim算法和Kruskal算法

    Prim算法(使用visited数组实现) Prim算法求最小生成树的时候和边数无关,和顶点树有关,所以适合求解稠密网的最小生成树. Prim算法的步骤包括: 1. 将一个图分为两部分,一部分归为点集 ...

  8. Prim算法和Kruskal算法

       Prim算法和Kruskal算法都能从连通图找出最小生成树.区别在于Prim算法是以某个顶点出发挨个找,而Kruskal是先排序边,每次选出最短距离的边再找. 一.Prim(普里姆算法)算法: ...

  9. Prim算法和Kruskal算法的正确性证明

    今天学习了Prim算法和Kruskal算法,因为书中只给出了算法的实现,而没有给出关于算法正确性的证明,所以尝试着给出了自己的证明.刚才看了一下<算法>一书中的相关章节,使用了切分定理来证 ...

随机推荐

  1. 两强相争,鹿死谁手 — JQuery中的Ajax与AngularJS中的$http

    一.JQuery与AngularJS 首先,先简单的了解一下JQuery与AngularJS.从源头上来说,两者都属于原生JS所封装成的库,两种为平行关系. 二.Ajax请求与数据遍历打印 这里是Aj ...

  2. 学习笔记TF020:序列标注、手写小写字母OCR数据集、双向RNN

    序列标注(sequence labelling),输入序列每一帧预测一个类别.OCR(Optical Character Recognition 光学字符识别). MIT口语系统研究组Rob Kass ...

  3. JSON数据解析:Gson(谷歌)和fastjson(阿里巴巴)的异同点

    Gson和fastjson分别为谷歌和阿里巴巴对JSON数据进行处理封装的jar包 Gson(谷歌)和fastjson(阿里巴巴)两者异同点: 相同点:都是根据JSON数据创建相应的类 不同点: 1. ...

  4. kotlin成长之路

    前言: 从接触Kotlin开始,也就是我今天开启写技术博客的决定,文采不佳,欢迎各位阅读者的理解与指点.而该篇文章是最为博客新手的我对Kotlin成长的引导篇,所以内容一般是Kotlin技术博客的目录 ...

  5. C++抽象编程·运算符重载与友元函数

    运算符重载(Operator overloading) 从我们在几个前篇的类的层次介绍中可以知道,C++可以扩展标准运算符,使其适用于新类型.这种技术称为运算符重载. 例如,字符串类重载+运算符,使其 ...

  6. 如何同时完成多个ajax之后再执行某个方法 ? 使用$.when().done();

    jQuery中的$.when()方法比较复杂,这里不作全面讲解,只写一个同时完成多个ajax请求后执行操作的方法. 有时候我们需要等待多个ajax执行完以后,再执行某个操作. 写法如下: $.when ...

  7. 微信JS-SDK开发 入门指南

    目录 前言 1. 过程 1.1 代码 1.2 代理 1.3 下载 1.4 解压 1.5 运行 1.6 查看 2. 微信接口测试 2.1 申请测试帐号 2.1.1 测试号信息 2.1.2 接口配置信息 ...

  8. 利用arpspoof和urlsnarf 进行ARP嗅探

    地址解析协议 (ARP, Address Resolution Protocol) 是如何将网络设备的MAC地址和其IP地址关联起来的,这样在同一个局域网内的设备就能相互知道彼此的存在.ARP基本上就 ...

  9. (转)让浏览器支持Webp

    转载:https://segmentfault.com/a/1190000005898538?utm_source=tuicool&utm_medium=referral Webp介绍 web ...

  10. 用css控制字数,多余的用省略号代替

    选择器 { white-space: nowrap; overflow: hidden; text-overflow: ellipsis; width: 100px; } white-space 属性 ...