学习笔记TF035:实现基于LSTM语言模型
神经结构进步、GPU深度学习训练效率突破。RNN,时间序列数据有效,每个神经元通过内部组件保存输入信息。
卷积神经网络,图像分类,无法对视频每帧图像发生事情关联分析,无法利用前帧图像信息。RNN最大特点,神经元某些输出作为输入再次传输到神经元,可以利用之前信息。
xt是RNN输入,A是RNN节点,ht是输出。对RNN输入数据xt,网络计算得输出结果ht,某些信息(state,状态)传到网络输入。输出ht与label比较得误差,用梯度下降(Gradient Descent)和Back-Propagation Through Time(BPTT)方法训练网络。BPTT,用反向传播求解梯度,更新网络参数权重。Real_Time Recurrent Learning(RTRL),正向求解梯度,计算复杂度高。介于BPTT和RTRL之间混合方法,缓解时间序列间隔过长带来梯度弥散问题。
RNN循环展开串联结构,类似系列输入x和系列输出串联普通神经网络,上层神经网络传递信息给下层。适合时间序列数据处理分析。展开每层级神经网络,参数相同,只需要训练一层RNN参数。共享参数思想与卷积神经网络权值共享类似。
RNN处理整个时间序列信息,记忆最深是最后输入信号。前信号强度越来越低。Long Sort Term Memory(LSTM)突破,语音识别、文本分类、语言模型、自动对话、机器翻译、图像标注领域。
长程依赖(Long-term Dependencies),传统RNN关键缺陷。LSTM,Schmidhuber教授1997年提出,解决长程依赖,不需要特别复杂调试超参数,默认记住长期信息。
LSTM内部结构,4层神经网络,小圆圈是point-wise操作(向量加法、点乘等),小矩形是一层可学习参数神经网络。LSTM单元上直线代表LSTM状态state,贯穿所有串联LSTM单元,从第一个流向最后一个,只有少量线性干预和改变。状态state传递,LSTM单凶添加或删减信息,LSTM Gates控制信息流修改操作。Gates包含Sigmoid层和向量点乘操作。Sigmoid层输出0到1间值,直接控制信息传递比例。0不允许信息传递,1让信息全部通过。每个LSTM单元3个Gates,维护控制单元状态信息。状态信息储存、修改,LSTM单元实现长程记忆。
RNN变种,LSTM,Gated Recurrent Unit(GRU)。GRU结构,比LSTM少一个Gate。计算效率更高(每个单元计算节约几个矩阵运算),占用内存少。GRU收敛所需迭代更少,训练速度更快。
循环神经网络,自然语言处理,语言模型。语言模型,预测语句概率模型,给定上下文语境,历史出现单词,预测下一个单词出现概率,NLP、语音识别、机器翻译、图片标注任务基础关键。Penn Tree Bank(PTB)常用数据集,质量高,不大,训练快。《Recurrent Neural Network Regularization》。
下载PTB数据集,解压。确保解压文件路径和Python执行路径一致。1万个不同单词,有句尾标记,罕见词汇统一处理为特殊字符。wget http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examplex.tgz 。tar xvf simple-examples.tgz 。
下载TensorFlow Models库(git clone https://github.com/tensorflow/models.git),进入目录models/tutorials/rnn/ptb(cd)。载入常用库,TensorFlow Models PTB reader,读取数据内容。单词转唯一数字编码。
定义语言模型处理输入数据class,PTBInput。初始化方法__init__(),读取参数config的batch_size、num_steps到本地变量。num_steps,LSTM展开步数(unrolled steps of LSTM)。计算epoth size ,epoch内训练迭代轮数,数据长度整除batch_size、num_steps。reader.ptb_producer获取特征数据input_data、label数据targets。每次执行获取一个batch数据。
定义语言模型class,PTBModel。初始化函数__init__(),参数,训练标记is_training、配置参数config、PTBInput类实例input_。读取input_的batch_size、num_steps,读取config的hidden_size(LSTM节点数)、vocab_size(词汇表大小)到本地变量。
tf.contrib.rnn.BasicLSTMCell设置默认LSTM单元,隐含节点数hidden_size、gorget_bias(forget gate bias) 0,state_is_tuple True,接受返回state是2-tuple形式。训练状态且Dropout keep_prob小于1,1stm_cell接Dropout层,tf.contrib.rnn.DropoutWrapper函数。RNN堆叠函数 tf.contrib.rnn.MultiRNNCell 1stm_cell多层堆叠到cell,堆叠次数 config num_layers,state_is_truple设True,cell.zero_state设LSTM单元初始化状态0。LSTM单元读放单词,结合储存状态state计算下一单词出现概率分布,每次读取单词,状态state更新。
创建网络词嵌入embedding,将one-hot编码格式单词转向量表达形式。with tf.device("/cpu:0") 计算限定CPU进行。初始化embedding矩阵,行数设词汇表数vocab_size,列数(单词向量表达维数)hidden_size,和LST单元陷含节点数一致。训练过程,embedding参数优化更新。tf.nn.embedding_lookup查询单对应向量表达获得inputs。训练状态加一层Dropout。
定义输出outputs,tf.variable_scope设名RNN。控制训练过程,限制梯度反向传播展开步数固定值,num_steps.设置循环长度 num-steps,控制梯度传播。从第2次循环,tf.get_varible_scope.reuse_variables设置复用变量。每次循环,传入inputs、state到堆叠LSTM单元(cell)。inputs 3维度,第1维 batch第几个样本,第2维 样本第几个单词,第3维 单词向量表达维度。inputs[:,time_step,:] 所有样本第time_step个单词。输出cell_output和更新state。 结果cell_output添加输出列表outputs。
tf.concat串接output内容,tf.reshape转长一维向量。Softmax层,定义权重softmax_w、偏置softmax_b。tf.matmul 输出output乘权重加偏置得网络最后输出logits。定久损失loss,tf.contrib.legacy_seq2seq.sequence_loss_by_example计算输出logits和targets偏差。sequence_loss,target words average negative log probability,定义loss=1/N add i=1toN ln Ptargeti。tf.reduce_sum汇总batch误差,计算平均样本误差cost。保留最终状态final_state。不是训练状态直接返回。
定义学习速率变量lr,设不可训练。tf.trainable_variables获取全部可训练参数tvars。针对cost,计算tvars梯度,tf.clip_by_global_norm设梯度最大范数,起正则化效果。Gradient Clipping防止Gradient Explosion梯度爆炸问题。不限制梯度,迭代梯度过大,训练难收敛。定义优化器Gradient Descent。创建训练操作_train_op,optimizer.apply_gradients,clip过梯度用到所有可训练参数tvars,tf.contrib.framework.get_or_create_global_step生成全局统一训练步数。
设置_new_lr(new learning rate) placeholder控制学习速率。定义操作_lr_update,tf.assign 赋_new_lr值给当前学习速率_lr。定义assign_lr函数,外部控制模型学习速率,学习速率值传入_new_lr placeholder,执行_update_lr操作修改学习速率。
定义PTBModel class property。Python @property装饰器,返回变量设只读,防止修改变量引发问题。input、initial_state、cost、final_state、lr、train_op。
定义模型设置。init_scale,网络权重初始scale。learning_rate,学习速率初始值。max_grad_norm,梯度最大范数。num_lyers,LSTM堆叠层数。num_steps,LSTM梯度反向传播展开步数。hidden_size,LSTM内隐含节点数。max_epoch,初始学习速率可训练epoch数,需要调整学习速率。max_max_epoch,总共可训练epoch数。keep_prob,dropout层保留节点比例。lr_decay学习速率衰减速度。batch_size,每个batch样本数量。
MediumConfig中型模型,减小init_scale,希望权重初值不要过大,小有利温和训练。学习速率、最大梯度范数不变,LSTM层数不变。梯度反向传播展开步数num_steps从20增大到35。hidden_size、max_max_epoch增大3倍。设置dropout keep_prob 0.5。学习迭代次数增大,学习速率衰减速率lr_decay减小。batch_size、词汇表vocab_size不变。
LargeConfig大型模型,进一步缩小init_scale。放宽最大梯度范数max_grad_norm到10。hidden_size提升到1500。max_epoch、max_max_epoch增大。keep_prob因模型复杂度上升继续下降。学习速率衰减速率lr_decay进一步减小。
TestConfig测试用。参数尽量最小值。
定义训练epoch数据函数run_epoch。记录当前时间,初始化损失costs、迭代数据iters,执行model.initial_state初始化状态,获得初始状态。创建输出结果字典表fetches,包括cost、final_state。如果有评测操作,也加入fetches。训练循环,次数epoch_size。循环,生成训练feed_dict,全部LSTM单元state加入feed_dict,传入feed_dict,执行fetches训练网络,拿到cost、state。累加cost到costs,累加num_steps到iters。每完成10%epoch,展示结果,当前epoch进度,perplexity(平均cost自然常数指数,语言模型比较性能重要指标,越低模型输出概率分布在预测样本越好),训练速度(单词数每秒)。返回perplexity函数结果。
reader.ptb_raw_data读取解压后数据,得训练数据、验证数据、测试数据。定义训练模型配置SmallConfig。测试配置eval_config需和训练配置一致。测试配置batch_size、num_steps 1。
创建默认Graph,tf.random_uniform_initializer设置参数初始化器,参数范围在[-init_scale,init_scale]之间。PTBInput和PTBModel创建训练模型m,验证模型mvalid,测试模型mtest。训练、验证模型用config,测试模型用测试配置eval_config。
tf.train.supervisor()创建训练管理器sv,sv.managed_session创建默认session,执行训练多个epoch数据循环。每个epoch循环,计算累计学习速率衰减值,只需计算超过max_epoch轮数,求lr_decay超出轮数次幂。初始学习速率乘累计衰减速,更新学习速率。循环内执行epoch训练和验证,输出当前学习速率、训练验证集perplexity。完成全部训练,计算输出模型测试集perplexity。
SmallConfig小型模型,i7 6900K GTX 1080 训练速率21000单词每秒,最后epoch,训练集36.9 perplexity,验证集122.3、测试集116.7。
中型模型,训练集48.45,验证集86.16、测试集82.07。大型模型,训练集37.87,验证集82.62、测试集78.29。
LSTM存储状态,依靠状态对当前输入处理分析预测。RNN、LSTM赋预神经网络记忆和储存过往信息能力,模仿人类简单记忆、推理功能。注意力(attention)机制是RNN、NLP领域研究热点,机器更好模拟人脑功能。图像标题生成任务,注意力机制RNN对区域图像分析,生成对应文字描述。《Show,Attend and Tell:Neural Image Caption Generation with Visual Attention》。
import time
import numpy as np
import tensorflow as tf
import reader
#flags = tf.flags
#logging = tf.logging
#flags.DEFINE_string("save_path", None,
# "Model output directory.")
#flags.DEFINE_bool("use_fp16", False,
# "Train using 16-bit floats instead of 32bit floats")
#FLAGS = flags.FLAGS
#def data_type():
# return tf.float16 if FLAGS.use_fp16 else tf.float32
class PTBInput(object):
"""The input data."""
def __init__(self, config, data, name=None):
self.batch_size = batch_size = config.batch_size
self.num_steps = num_steps = config.num_steps
self.epoch_size = ((len(data) // batch_size) - 1) // num_steps
self.input_data, self.targets = reader.ptb_producer(
data, batch_size, num_steps, name=name)
class PTBModel(object):
"""The PTB model."""
def __init__(self, is_training, config, input_):
self._input = input_
batch_size = input_.batch_size
num_steps = input_.num_steps
size = config.hidden_size
vocab_size = config.vocab_size
# Slightly better results can be obtained with forget gate biases
# initialized to 1 but the hyperparameters of the model would need to be
# different than reported in the paper.
def lstm_cell():
return tf.contrib.rnn.BasicLSTMCell(
size, forget_bias=0.0, state_is_tuple=True)
attn_cell = lstm_cell
if is_training and config.keep_prob < 1:
def attn_cell():
return tf.contrib.rnn.DropoutWrapper(
lstm_cell(), output_keep_prob=config.keep_prob)
cell = tf.contrib.rnn.MultiRNNCell(
[attn_cell() for _ in range(config.num_layers)], state_is_tuple=True)
self._initial_state = cell.zero_state(batch_size, tf.float32)
with tf.device("/cpu:0"):
embedding = tf.get_variable(
"embedding", [vocab_size, size], dtype=tf.float32)
inputs = tf.nn.embedding_lookup(embedding, input_.input_data)
if is_training and config.keep_prob < 1:
inputs = tf.nn.dropout(inputs, config.keep_prob)
# Simplified version of models/tutorials/rnn/rnn.py's rnn().
# This builds an unrolled LSTM for tutorial purposes only.
# In general, use the rnn() or state_saving_rnn() from rnn.py.
#
# The alternative version of the code below is:
#
# inputs = tf.unstack(inputs, num=num_steps, axis=1)
# outputs, state = tf.nn.rnn(cell, inputs,
# initial_state=self._initial_state)
outputs = []
state = self._initial_state
with tf.variable_scope("RNN"):
for time_step in range(num_steps):
if time_step > 0: tf.get_variable_scope().reuse_variables()
(cell_output, state) = cell(inputs[:, time_step, :], state)
outputs.append(cell_output)
output = tf.reshape(tf.concat(outputs, 1), [-1, size])
softmax_w = tf.get_variable(
"softmax_w", [size, vocab_size], dtype=tf.float32)
softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=tf.float32)
logits = tf.matmul(output, softmax_w) + softmax_b
loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example(
[logits],
[tf.reshape(input_.targets, [-1])],
[tf.ones([batch_size * num_steps], dtype=tf.float32)])
self._cost = cost = tf.reduce_sum(loss) / batch_size
self._final_state = state
if not is_training:
return
self._lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars),
config.max_grad_norm)
optimizer = tf.train.GradientDescentOptimizer(self._lr)
self._train_op = optimizer.apply_gradients(
zip(grads, tvars),
global_step=tf.contrib.framework.get_or_create_global_step())
self._new_lr = tf.placeholder(
tf.float32, shape=[], name="new_learning_rate")
self._lr_update = tf.assign(self._lr, self._new_lr)
def assign_lr(self, session, lr_value):
session.run(self._lr_update, feed_dict={self._new_lr: lr_value})
@property
def input(self):
return self._input
@property
def initial_state(self):
return self._initial_state
@property
def cost(self):
return self._cost
@property
def final_state(self):
return self._final_state
@property
def lr(self):
return self._lr
@property
def train_op(self):
return self._train_op
class SmallConfig(object):
"""Small config."""
init_scale = 0.1
learning_rate = 1.0
max_grad_norm = 5
num_layers = 2
num_steps = 20
hidden_size = 200
max_epoch = 4
max_max_epoch = 13
keep_prob = 1.0
lr_decay = 0.5
batch_size = 20
vocab_size = 10000
class MediumConfig(object):
"""Medium config."""
init_scale = 0.05
learning_rate = 1.0
max_grad_norm = 5
num_layers = 2
num_steps = 35
hidden_size = 650
max_epoch = 6
max_max_epoch = 39
keep_prob = 0.5
lr_decay = 0.8
batch_size = 20
vocab_size = 10000
class LargeConfig(object):
"""Large config."""
init_scale = 0.04
learning_rate = 1.0
max_grad_norm = 10
num_layers = 2
num_steps = 35
hidden_size = 1500
max_epoch = 14
max_max_epoch = 55
keep_prob = 0.35
lr_decay = 1 / 1.15
batch_size = 20
vocab_size = 10000
class TestConfig(object):
"""Tiny config, for testing."""
init_scale = 0.1
learning_rate = 1.0
max_grad_norm = 1
num_layers = 1
num_steps = 2
hidden_size = 2
max_epoch = 1
max_max_epoch = 1
keep_prob = 1.0
lr_decay = 0.5
batch_size = 20
vocab_size = 10000
def run_epoch(session, model, eval_op=None, verbose=False):
"""Runs the model on the given data."""
start_time = time.time()
costs = 0.0
iters = 0
state = session.run(model.initial_state)
fetches = {
"cost": model.cost,
"final_state": model.final_state,
}
if eval_op is not None:
fetches["eval_op"] = eval_op
for step in range(model.input.epoch_size):
feed_dict = {}
for i, (c, h) in enumerate(model.initial_state):
feed_dict[c] = state[i].c
feed_dict[h] = state[i].h
vals = session.run(fetches, feed_dict)
cost = vals["cost"]
state = vals["final_state"]
costs += cost
iters += model.input.num_steps
if verbose and step % (model.input.epoch_size // 10) == 10:
print("%.3f perplexity: %.3f speed: %.0f wps" %
(step * 1.0 / model.input.epoch_size, np.exp(costs / iters),
iters * model.input.batch_size / (time.time() - start_time)))
return np.exp(costs / iters)
raw_data = reader.ptb_raw_data('simple-examples/data/')
train_data, valid_data, test_data, _ = raw_data
config = SmallConfig()
eval_config = SmallConfig()
eval_config.batch_size = 1
eval_config.num_steps = 1
with tf.Graph().as_default():
initializer = tf.random_uniform_initializer(-config.init_scale,
config.init_scale)
with tf.name_scope("Train"):
train_input = PTBInput(config=config, data=train_data, name="TrainInput")
with tf.variable_scope("Model", reuse=None, initializer=initializer):
m = PTBModel(is_training=True, config=config, input_=train_input)
#tf.scalar_summary("Training Loss", m.cost)
#tf.scalar_summary("Learning Rate", m.lr)
with tf.name_scope("Valid"):
valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mvalid = PTBModel(is_training=False, config=config, input_=valid_input)
#tf.scalar_summary("Validation Loss", mvalid.cost)
with tf.name_scope("Test"):
test_input = PTBInput(config=eval_config, data=test_data, name="TestInput")
with tf.variable_scope("Model", reuse=True, initializer=initializer):
mtest = PTBModel(is_training=False, config=eval_config,
input_=test_input)
sv = tf.train.Supervisor()
with sv.managed_session() as session:
for i in range(config.max_max_epoch):
lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0)
m.assign_lr(session, config.learning_rate * lr_decay)
print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))
train_perplexity = run_epoch(session, m, eval_op=m.train_op,
verbose=True)
print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
valid_perplexity = run_epoch(session, mvalid)
print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))
test_perplexity = run_epoch(session, mtest)
print("Test Perplexity: %.3f" % test_perplexity)
# if FLAGS.save_path:
# print("Saving model to %s." % FLAGS.save_path)
# sv.saver.save(session, FLAGS.save_path, global_step=sv.global_step)
#if __name__ == "__main__":
# tf.app.run()
参考资料:
《TensorFlow实战》
欢迎付费咨询(150元每小时),我的微信:qingxingfengzi
学习笔记TF035:实现基于LSTM语言模型的更多相关文章
- 深度学习中的序列模型演变及学习笔记(含RNN/LSTM/GRU/Seq2Seq/Attention机制)
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻 ...
- 驱动开发学习笔记. 0.02 基于EASYARM-IMX283 烧写uboot和linux系统
驱动开发读书笔记. 0.02 基于EASYARM-IMX283 怎么烧写自己裁剪的linux内核?(非所有arm9通用) 手上有一块tq2440,但是不知道什么原因,没有办法烧boot进norflas ...
- (2)《Head First HTML与CSS》学习笔记---img与基于标准的HTML5
1.浏览器处理图像的过程: 1.服务器获取文件,显示出文本结构,以及预留默认的大小给<img>(如果该<img>有width-1值和height-1值,则根据这个值提前设好页面 ...
- ROS学习笔记八:基于Qt搭建ROS开发环境
1 前言 本文介绍一种Qt下进行ROS开发的完美方案,使用的是ros-industrial的Levi-Armstrong在2015年12月开发的一个Qt插件ros_qtc_plugin,这个插件使得Q ...
- 学习笔记TF036:实现Bidirectional LSTM Classifier
双向循环神经网络(Bidirectional Recurrent Neural Networks,Bi-RNN),Schuster.Paliwal,1997年首次提出,和LSTM同年.Bi-RNN,增 ...
- 【Vue学习笔记1】基于Vue2.2.6版本
记录一下自己关于Vue学习的过程,便于以后归纳整理以及复习. 1.下载引用vue.js 下载: npm install vue ,然后引用. 或直接线上引用: <script src=" ...
- 挑子学习笔记:特征选择——基于假设检验的Filter方法
转载请标明出处: http://www.cnblogs.com/tiaozistudy/p/hypothesis_testing_based_feature_selection.html Filter ...
- struts2视频学习笔记 22-23(基于XML配置方式实现对action的所有方法及部分方法进行校验)
课时22 基于XML配置方式实现对action的所有方法进行校验 使用基于XML配置方式实现输入校验时,Action也需要继承ActionSupport,并且提供校验文件,校验文件和action类 ...
- MPC学习笔记1:基于状态空间模型的预测控制(2)
基于估计的无约束预测控制 1.引言 基本上这两个部分都是在线性理论的框架下,利用状态空间法来建模.求解控制律.状态空间模型在理论分析上具有很强的优越性,但实际应用中能直接准确且经济地获取系统状态并不容 ...
随机推荐
- WPF 杂谈——Trigger触发器
笔者在使用的WPF过程中,见过的触发器有三种:Trigger.DataTrigger.EventTrigger.其中最为常用的要属Trigger.至于触发器的作用就是当某个属性的值发生变化,应该去做某 ...
- Wireshark初步入门
第一次捕获数据包 为了能让Wireshark得到一些数据包,你可以开始你的第一次数据包捕获实验了.你可能会想:"当网络什么问题都没有的时候,怎么能捕获数据包呢?" 首先,网络总是有 ...
- [SinGuLaRiTy] 组合数学题目复习
[SinGuLaRiTy] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. [CQBZOJ 2011] 计算系数 题目描述 给定一个多项式( ...
- 跟我一起读postgresql源码(六)——Executor(查询执行模块之——查询执行策略)
时光荏苒,岁月如梭.楼主已经很久没有更新了.之前说好的一周一更的没有做到.实在是事出有因,没能静下心来好好看代码.当然这不能作为我不更新的理由,时间挤挤还是有的,拖了这么久,该再写点东西了,不然人就怠 ...
- 对于所有对象都通用方法的解读(Effective Java 第二章)
这篇博文主要介绍覆盖Object中的方法要注意的事项以及Comparable.compareTo()方法. 一.谨慎覆盖equals()方法 其实平时很少要用到覆盖equals方法的情况,没有什么特殊 ...
- Java之StringBuffer,StringBuilder,Math,Date,SimpleDateFormat,UUID,File
java.lang 类 StringBuffer java.lang.Object java.lang.StringBuffer 所有已实现的接口: Serializable, Appendable, ...
- 以图像分割为例浅谈支持向量机(SVM)
1. 什么是支持向量机? 在机器学习中,分类问题是一种非常常见也非常重要的问题.常见的分类方法有决策树.聚类方法.贝叶斯分类等等.举一个常见的分类的例子.如下图1所示,在平面直角坐标系中,有一些点 ...
- ES6正则表达式扩展
前面的话 正则表达式是javascript操作字符串的一个重要组成部分,但在以往的版本中并未有太多改变.然而,在ES6中,随着字符串操作的变更, ES6也对正则表达式进行了一些更新.本文将详细介绍ES ...
- MySQL慢查询日志分析
一:查询slow log的状态,如示例代码所示,则slow log已经开启. mysql> show variables like '%slow%'; +-------------------- ...
- SetConsoleWindowInfo 函数--设置控制台窗口的大小和位置
SetConsoleWindowInfo函数 来源:https://msdn.microsoft.com/en-us/library/windows/desktop/ms686125(v=vs.85) ...