i

mport tensorflow as tf
import numpy as np # 添加层
def add_layer(inputs, in_size, out_size, activation_function=None):
# add one more layer and return the output of this layer
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs # 1.训练的数据
# Make up some real data
x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise # 2.定义节点准备接收数据
# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1]) # 3.定义神经层:隐藏层和预测层
# add hidden layer 输入值是 xs,在隐藏层有 10 个神经元
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer 输入值是隐藏层 l1,在预测层输出 1 个结果
prediction = add_layer(l1, 10, 1, activation_function=None) # 4.定义 loss 表达式
# the error between prediciton and real data
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1])) # 5.选择 optimizer 使 loss 达到最小
# 这一行定义了用什么方式去减少 loss,学习率是 0.1
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # important step 对所有变量进行初始化
init = tf.initialize_all_variables()
sess = tf.Session()
# 上面定义的都没有运算,直到 sess.run 才会开始运算
sess.run(init) # 迭代 1000 次学习,sess.run optimizer
for i in range(1000):
# training train_step 和 loss 都是由 placeholder 定义的运算,所以这里要用 feed 传入参数
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
# to see the step improvement
print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))

参考:http://www.jianshu.com/p/e112012a4b2d

tensorflow 实现神经网络的更多相关文章

  1. 用Tensorflow让神经网络自动创造音乐

    #————————————————————————本文禁止转载,禁止用于各类讲座及ppt中,违者必究————————————————————————# 前几天看到一个有意思的分享,大意是讲如何用Ten ...

  2. (转)一文学会用 Tensorflow 搭建神经网络

    一文学会用 Tensorflow 搭建神经网络 本文转自:http://www.jianshu.com/p/e112012a4b2d 字数2259 阅读3168 评论8 喜欢11 cs224d-Day ...

  3. 用Tensorflow搭建神经网络的一般步骤

    用Tensorflow搭建神经网络的一般步骤如下: ① 导入模块 ② 创建模型变量和占位符 ③ 建立模型 ④ 定义loss函数 ⑤ 定义优化器(optimizer), 使 loss 达到最小 ⑥ 引入 ...

  4. Tensorflow卷积神经网络[转]

    Tensorflow卷积神经网络 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Te ...

  5. 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)

    1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...

  6. 深度学习原理与框架-Tensorflow卷积神经网络-神经网络mnist分类

    使用tensorflow构造神经网络用来进行mnist数据集的分类 相比与上一节讲到的逻辑回归,神经网络比逻辑回归多了隐藏层,同时在每一个线性变化后添加了relu作为激活函数, 神经网络使用的损失值为 ...

  7. 一文学会用 Tensorflow 搭建神经网络

    http://www.jianshu.com/p/e112012a4b2d 本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的,讲的很好,浅显易懂,入门首选, 而且在github有代码 ...

  8. tensorflow之神经网络实现流程总结

    tensorflow之神经网络实现流程总结 1.数据预处理preprocess 2.前向传播的神经网络搭建(包括activation_function和层数) 3.指数下降的learning_rate ...

  9. 【零基础】使用Tensorflow实现神经网络

    一.序言 前面已经逐步从单神经元慢慢“爬”到了神经网络并把常见的优化都逐个解析了,再往前走就是一些实际应用问题,所以在开始实际应用之前还得把“框架”翻出来,因为后面要做的工作需要我们将精力集中在业务而 ...

  10. 使用 Visual Studio 2015 + Python3.6 + tensorflow 构建神经网络时报错:'utf-8' codec can't decode byte 0xcc in position 78: invalid continuation byte

    使用 Visual Studio 2015 + Python3.6 + tensorflow 构建神经网络时报错:'utf-8' codec can't decode byte 0xcc in pos ...

随机推荐

  1. C#基础 Dictionary存储自定义对象作为键值

    程序每次向容器Dictionary中插入数据时,都会判断Key值是否已经存在,如果不存在,则插入.否则抛出异常.那么Dictionary又是如何判断Key值是否存在的呢? 请看下面的代码:   cla ...

  2. JDBC复习

    -----------------------------------------JDBC复习----------------------------------------- 1.JDBC (Jav ...

  3. java排序算法之冒泡排序

    冒泡排序的基本思想即将一串数字进行由小到大进行排序 例如1,9,7,2,4,3,6,10,20,5 实现思路: 第一个数分别与接下来的数字做对比 第一次  1<9不变,再1<7不变,1&l ...

  4. JS监听div的resize事件

    原文地址:http://zhangyiheng.com/blog/articles/div_resize.html 需求 开发过程中经常遇到的一个问题就是如何监听一个div的size变化. 比如我用c ...

  5. Discuz开发帮助

    http://ishare.iask.sina.com.cn/f/33819255.html Discuz二次开发手册(下载) http://dev.discuz.org/wiki/index.php ...

  6. php利用gd实现图片的边框

    <?php //实现两张图片合并 并内图片有一定的边框 $file = 'image/qr_1047.png'; $logo = 'image/logo_1047.jpg'; $code = ' ...

  7. 我的学习之路_第二十章_JDBC

    JDBC 使用JDBC技术,通过mysql提供的驱动程序,操作数据库 ● 1. 注册驱动 告知jvm 使用的是什么驱动程序(mysql,oracle) 使用API中的类 DriverManager中的 ...

  8. MyEclipse常用操作

    选择你要注释的那一行或多行代码,按Ctrl+/即可,取消注释也是选中之后按Ctrl+/即可. 如果你想使用的快捷键的注释是的话,那么你的快捷键是ctrl+shift+/我以前都是手动注释的,直接打// ...

  9. net 中web.config单一解决方法 (其他配置引入方式)

    近期一个项目需要写许多的配置项,发现在单个web.config里面写的话会很乱也难于查找 所以搜了一下解决了,记录下来 一.   webconfig提供了引入其他config的方式 <conne ...

  10. VMwareTools安装失败提示找不到C headers和gcc目录

    在VMware虚拟机上安装好linux系统后,发现往往不能全屏,也不能设置共享文件夹进行文件共享,这时候可以通过安装VMwareTools这个工具来实现文件拖拽.共享和全屏. 安装的过程不再赘述,关键 ...