1.启动不起来

查看JobManager日志:

WARN  org.apache.flink.runtime.webmonitor.JobManagerRetriever       - Failed to retrieve leader gateway and port.
akka.actor.ActorNotFound: Actor not found for: ActorSelection[Anchor(akka.tcp://flink@t-sha1-flk-01:6123/), Path(/user/jobmanager)]
at akka.actor.ActorSelection$$anonfun$resolveOne$.apply(ActorSelection.scala:)
at akka.actor.ActorSelection$$anonfun$resolveOne$.apply(ActorSelection.scala:)
at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:)
at akka.dispatch.BatchingExecutor$AbstractBatch.processBatch(BatchingExecutor.scala:)
at akka.dispatch.BatchingExecutor$Batch.run(BatchingExecutor.scala:)
at akka.dispatch.ExecutionContexts$sameThreadExecutionContext$.unbatchedExecute(Future.scala:)
at akka.dispatch.BatchingExecutor$class.execute(BatchingExecutor.scala:)
at akka.dispatch.ExecutionContexts$sameThreadExecutionContext$.execute(Future.scala:)
at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:)
at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:)
at akka.pattern.PromiseActorRef$$anonfun$.apply$mcV$sp(AskSupport.scala:)
at akka.actor.Scheduler$$anon$.run(Scheduler.scala:)
at scala.concurrent.Future$InternalCallbackExecutor$.unbatchedExecute(Future.scala:)
at scala.concurrent.BatchingExecutor$class.execute(BatchingExecutor.scala:)
at scala.concurrent.Future$InternalCallbackExecutor$.execute(Future.scala:)
at akka.actor.LightArrayRevolverScheduler$TaskHolder.executeTask(Scheduler.scala:)
at akka.actor.LightArrayRevolverScheduler$$anon$.executeBucket$(Scheduler.scala:)
at akka.actor.LightArrayRevolverScheduler$$anon$.nextTick(Scheduler.scala:)
at akka.actor.LightArrayRevolverScheduler$$anon$.run(Scheduler.scala:)
at java.lang.Thread.run(Thread.java:)

解决方案:/etc/hosts中配置的主机名都是小写,但是在Flink配置文件(flink-config.yaml、masters、slaves)中配置的都是大写的hostname,将flink配置文件中的hostname都改为小写或者IP地址

2.运行一段时间退出

AsynchronousException{java.lang.Exception: Could not materialize checkpoint  for operator Compute By Event Time (/).}
at org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.run(StreamTask.java:)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:)
at java.util.concurrent.FutureTask.run(FutureTask.java:)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:)
at java.lang.Thread.run(Thread.java:)
Caused by: java.lang.Exception: Could not materialize checkpoint for operator Compute By Event Time (/).
... more
Caused by: java.util.concurrent.ExecutionException: java.io.IOException: Size of the state is larger than the maximum permitted memory-backed state. Size= , maxSize= . Consider using a different state backend, like the File System State backend.
at java.util.concurrent.FutureTask.report(FutureTask.java:)
at java.util.concurrent.FutureTask.get(FutureTask.java:)
at org.apache.flink.util.FutureUtil.runIfNotDoneAndGet(FutureUtil.java:)
at org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.run(StreamTask.java:)
... more
Suppressed: java.lang.Exception: Could not properly cancel managed keyed state future.
at org.apache.flink.streaming.api.operators.OperatorSnapshotResult.cancel(OperatorSnapshotResult.java:)
at org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.cleanup(StreamTask.java:)
at org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.run(StreamTask.java:)
... more
Caused by: java.util.concurrent.ExecutionException: java.io.IOException: Size of the state is larger than the maximum permitted memory-backed state. Size= , maxSize= . Consider using a different state backend, like the File System State backend.
at java.util.concurrent.FutureTask.report(FutureTask.java:)
at java.util.concurrent.FutureTask.get(FutureTask.java:)
at org.apache.flink.util.FutureUtil.runIfNotDoneAndGet(FutureUtil.java:)
at org.apache.flink.runtime.state.StateUtil.discardStateFuture(StateUtil.java:)
at org.apache.flink.streaming.api.operators.OperatorSnapshotResult.cancel(OperatorSnapshotResult.java:)
... more
Caused by: java.io.IOException: Size of the state is larger than the maximum permitted memory-backed state. Size= , maxSize= . Consider using a different state backend, like the File System State backend.
at org.apache.flink.runtime.state.memory.MemCheckpointStreamFactory.checkSize(MemCheckpointStreamFactory.java:)
at org.apache.flink.runtime.state.memory.MemCheckpointStreamFactory$MemoryCheckpointOutputStream.closeAndGetBytes(MemCheckpointStreamFactory.java:)
at org.apache.flink.runtime.state.memory.MemCheckpointStreamFactory$MemoryCheckpointOutputStream.closeAndGetHandle(MemCheckpointStreamFactory.java:)
at org.apache.flink.runtime.checkpoint.AbstractAsyncSnapshotIOCallable.closeStreamAndGetStateHandle(AbstractAsyncSnapshotIOCallable.java:)
at org.apache.flink.runtime.state.heap.HeapKeyedStateBackend$.performOperation(HeapKeyedStateBackend.java:)
at org.apache.flink.runtime.state.heap.HeapKeyedStateBackend$.performOperation(HeapKeyedStateBackend.java:)
at org.apache.flink.runtime.io.async.AbstractAsyncIOCallable.call(AbstractAsyncIOCallable.java:)
at java.util.concurrent.FutureTask.run(FutureTask.java:)
at org.apache.flink.runtime.state.heap.HeapKeyedStateBackend.snapshot(HeapKeyedStateBackend.java:)
at org.apache.flink.streaming.api.operators.AbstractStreamOperator.snapshotState(AbstractStreamOperator.java:)
at org.apache.flink.streaming.runtime.tasks.StreamTask$CheckpointingOperation.checkpointStreamOperator(StreamTask.java:)
at org.apache.flink.streaming.runtime.tasks.StreamTask$CheckpointingOperation.executeCheckpointing(StreamTask.java:)
at org.apache.flink.streaming.runtime.tasks.StreamTask.checkpointState(StreamTask.java:)
at org.apache.flink.streaming.runtime.tasks.StreamTask.performCheckpoint(StreamTask.java:)
at org.apache.flink.streaming.runtime.tasks.StreamTask.triggerCheckpointOnBarrier(StreamTask.java:)
at org.apache.flink.streaming.runtime.io.BarrierBuffer.notifyCheckpoint(BarrierBuffer.java:)
at org.apache.flink.streaming.runtime.io.BarrierBuffer.processBarrier(BarrierBuffer.java:)
at org.apache.flink.streaming.runtime.io.BarrierBuffer.getNextNonBlocked(BarrierBuffer.java:)
at org.apache.flink.streaming.runtime.io.StreamInputProcessor.processInput(StreamInputProcessor.java:)
at org.apache.flink.streaming.runtime.tasks.OneInputStreamTask.run(OneInputStreamTask.java:)
at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:)
at org.apache.flink.runtime.taskmanager.Task.run(Task.java:)
... more
[CIRCULAR REFERENCE:java.io.IOException: Size of the state is larger than the maximum permitted memory-backed state. Size= , maxSize= . Consider using a different state backend, like the File System State backend.]

解决方案:

状态存储,默认是在内存中,改为存储到HDFS中:

state.backend.fs.checkpointdir: hdfs://t-sha1-flk-01:9000/flink-checkpoints

3.长时间运行后,多次重启

AsynchronousException{java.lang.Exception: Could not materialize checkpoint 1488 for operator Compute By Event Time -> (MonitorData, MonitorDataMapping, MonitorSamplingData) (6/6).}
at org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.run(StreamTask.java:948)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.Exception: Could not materialize checkpoint 1488 for operator Compute By Event Time -> (MonitorData, MonitorDataMapping, MonitorSamplingData) (6/6).
... 6 more
Caused by: java.util.concurrent.ExecutionException: org.apache.hadoop.ipc.RemoteException(java.io.IOException): File /flink-checkpoints/8c274785f1ab027e6146a59364be645f/chk-1488/2c612f30-c57d-4ede-9025-9554ca11fd12 could only be replicated to 0 nodes instead of minReplication (=1). There are 3 datanode(s) running and no node(s) are excluded in this operation.
at org.apache.hadoop.hdfs.server.blockmanagement.BlockManager.chooseTarget4NewBlock(BlockManager.java:1628)
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getNewBlockTargets(FSNamesystem.java:3121)
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getAdditionalBlock(FSNamesystem.java:3045)
at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.addBlock(NameNodeRpcServer.java:725)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.addBlock(ClientNamenodeProtocolServerSideTranslatorPB.java:493)
at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:616)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:982)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2217)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2213)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1746)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2213)

查看hdfs日志,

WARN org.apache.hadoop.hdfs.protocol.BlockStoragePolicy: 
Failed to place enough replicas: expected size is 2 but only 0 storage types can be selected
(replication=3, selected=[], unavailable=[DISK], removed=[DISK, DISK],
policy=BlockStoragePolicy{HOT:7, storageTypes=[DISK], creationFallbacks=[], replicationFallbacks=[ARCHIVE]})

搭建的Flink使用HDFS作为CheckPoint的存储,当flink重启时,原来的checkpoint没有用了,我就手动给删了,不知道和这个有没有关系,为了不继续报异常,便重启了Flink、HDFS,重启后不再有异常信息了。

但是查看HDFS日志时,发现如下警告(不合规范的URI格式):

WARN org.apache.hadoop.hdfs.server.common.Util:
Path /mnt/hadoop/dfs/name should be specified as a URI in configuration files.
Please update hdfs configuration

原来是配置错了,hdfs-site.xml中的

    <property>
<name>dfs.namenode.name.dir</name>
<value>/mnt/hadoop/dfs/name</value>
</property>

应该改为:

    <property>
<name>dfs.namenode.name.dir</name>
<value>file:/mnt/hadoop/dfs/name</value>
</property>

至此问题解决,根上的问题应该是hdfs-site.xml配置的不对导致的。

4.Unable to load native-hadoop library for your platform

Flink启动时,有时会有如下警告信息:

WARN  org.apache.hadoop.util.NativeCodeLoader    

- Unable to load native-hadoop library for your platform... 

using builtin-java classes where applicable

参考资料1:http://blog.csdn.net/jack85986370/article/details/51902871

解决方案:编辑/etc/profile文件,增加

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native

export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"

未能解决该问题

5.hadoop checknative -a

WARN bzip2.Bzip2Factory: Failed to load/initialize native-bzip2 library system-native, will use pure-Java version
INFO zlib.ZlibFactory: Successfully loaded & initialized native-zlib library
Native library checking:
hadoop: true /usr/hadoop-2.7./lib/native/libhadoop.so.1.0.
zlib: true /lib64/libz.so.
snappy: false
lz4: true revision:
bzip2: false
openssl: false Cannot load libcrypto.so (libcrypto.so: cannot open shared object file: No such file or directory)!
INFO util.ExitUtil: Exiting with status

参考资料:http://blog.csdn.net/zhangzhaokun/article/details/50951238

解决方案

 cd /usr/lib64/
ln -s libcrypto.so.1.0.1e libcrypto.so

6.TaskManager退出

Flink运行一段时间后,出现TaskManager退出情况,通过jvisualvm抓取TaskManager的Dump,使用MAT进行分析,结果如下:

One instance of "org.apache.flink.runtime.io.network.buffer.NetworkBufferPool"
loaded by "sun.misc.Launcher$AppClassLoader @ 0x6c01de310" occupies 403,429,704 (76.24%) bytes.
The memory is accumulated in one instance of "java.lang.Object[]" loaded by "<system class loader>". Keywords
sun.misc.Launcher$AppClassLoader @ 0x6c01de310
java.lang.Object[]
org.apache.flink.runtime.io.network.buffer.NetworkBufferPool

发现是网络缓冲池不足,查到一篇文章:

https://issues.apache.org/jira/browse/FLINK-4536

和我遇到的情况差不多,也是使用了InfluxDB作为Sink,最后在Close里进行关闭,问题解决。

另外,在$FLINK_HOME/conf/flink-conf.yaml中,也有关于TaskManager网络栈的配置,暂时未调整

# The number of buffers for the network stack.
#
# taskmanager.network.numberOfBuffers:

7.Kafka partition leader切换导致Flink重启

现象:

7.1 Flink重启,查看日志,显示:

java.lang.Exception: Failed to send data to Kafka: This server is not the leader for that topic-partition.
at org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducerBase.checkErroneous(FlinkKafkaProducerBase.java:)
at org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducerBase.invoke(FlinkKafkaProducerBase.java:)
at org.apache.flink.streaming.api.operators.StreamSink.processElement(StreamSink.java:)
at org.apache.flink.streaming.runtime.io.StreamInputProcessor.processInput(StreamInputProcessor.java:)
at org.apache.flink.streaming.runtime.tasks.OneInputStreamTask.run(OneInputStreamTask.java:)
at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:)
at org.apache.flink.runtime.taskmanager.Task.run(Task.java:)
at java.lang.Thread.run(Thread.java:)
Caused by: org.apache.kafka.common.errors.NotLeaderForPartitionException: This server is not the leader for that topic-partition.

7.2 查看Kafka的Controller日志,显示:

 INFO [SessionExpirationListener on ], ZK expired; shut down all controller components and 

try to re-elect (kafka.controller.KafkaController$SessionExpirationListener)

7.3 设置retries参数

参考:http://colabug.com/122248.html 以及 Kafka官方文档(http://kafka.apache.org/082/documentation.html#producerconfigs),关于producer参数设置

设置了retries参数,可以在Kafka的Partition发生leader切换时,Flink不重启,而是做3次尝试:

        kafkaProducerConfig
{
"bootstrap.servers": "192.169.2.20:9093,192.169.2.21:9093,192.169.2.22:9093"
"retries":
}

使用Flink时遇到的问题(不断更新中)的更多相关文章

  1. 使用Flink时从Kafka中读取Array[Byte]类型的Schema

    使用Flink时,如果从Kafka中读取输入流,默认提供的是String类型的Schema: val myConsumer = new FlinkKafkaConsumer08[String](&qu ...

  2. [转帖]升级 Ubuntu,解决登录时提示有软件包可以更新的问题

    升级 Ubuntu,解决登录时提示有软件包可以更新的问题 2017年12月05日 11:58:17 阅读数:2953更多 个人分类: ubuntu Connecting to ... Connecti ...

  3. [转] 检查更新时出错:无法启动更新检查(错误代码为 4: 0x80070005 — system level)

    Google浏览器Chrome更新到时候提示错误:检查更新时出错:无法启动更新检查(错误代码为 4: 0x80070005 -- system level),很有可能是Chrome更新服务被禁用了,我 ...

  4. 安装SQL数据库时遇到问题。需要更新以前的visual studio 2010实例

    安装SQL数据库时遇到问题.需要更新以前的visual studio 2010实例此计算机安装了需要service pack 1更新的visual 2010,必须安装此更新才能成功安装选择的SQL s ...

  5. 史上最全的spark面试题——持续更新中

    史上最全的spark面试题——持续更新中 2018年09月09日 16:34:10 为了九亿少女的期待 阅读数 13696更多 分类专栏: Spark 面试题   版权声明:本文为博主原创文章,遵循C ...

  6. 微软承诺将在今年的 Visual C++ 更新中加入 Clang 编译器

    微软最近发布将在2015年11月 Visual C++ 更新中加入 Clang 编译器 ,Clang 开源编译器以相比GCC更快的编译速度和更优的错误提示著称. Clang关于C,C++,及Objec ...

  7. Android开发面试经——4.常见Android进阶笔试题(更新中...)

      Android开发(29)  版权声明:本文为寻梦-finddreams原创文章,请关注:http://blog.csdn.net/finddreams 关注finddreams博客:http:/ ...

  8. 《WCF技术剖析》博文系列汇总[持续更新中]

    原文:<WCF技术剖析>博文系列汇总[持续更新中] 近半年以来,一直忙于我的第一本WCF专著<WCF技术剖析(卷1)>的写作,一直无暇管理自己的Blog.在<WCF技术剖 ...

  9. HBase常见问题答疑解惑【持续更新中】

    HBase常见问题答疑解惑[持续更新中] 本文对HBase开发及使用过程中遇到过的常见问题进行梳理总结,希望能解答新加入的HBaser们的一些疑惑. 1. HTable线程安全吗? HTable不是线 ...

  10. 充电-ios(未完更新中...

    [reference]http://www.cocoachina.com/ios/20160323/15770.html OC的理解与特性 OC作为一门面向对象的语言,自然具有面向对象的语言特性:封装 ...

随机推荐

  1. Eclipse的几个常用快捷键

    键盘操作 功能 Alt + /    语句或变量名自动补全 Ctrl + Shift + F 语句格式化 Ctrl + / 单行注释(或取消单行注释) Ctrl + Shift + /   多行注释 ...

  2. Linux系统查找文件目录的命令

    查找目录名autobackup,并且列出路径:find -name 'autobackup'-type d find -name 'directoryname'-type d  

  3. Java面试之框架篇(八)

    71,谈谈你对Struts的理解. 1. struts是一个按MVC模式设计的Web层框架,其实它就是一个Servlet,这个Servlet名为ActionServlet,或是ActionServle ...

  4. Pyqt5学习系列

    最近在学习Pyqt5做界面,找到了一个非常棒的博主的学习系列 在此记录下来: http://blog.csdn.net/zhulove86/article/category/6381941

  5. 《java.util.concurrent 包源码阅读》05 BlockingQueue

    想必大家都很熟悉生产者-消费者队列,生产者负责添加元素到队列,如果队列已满则会进入阻塞状态直到有消费者拿走元素.相反,消费者负责从队列中拿走元素,如果队列为空则会进入阻塞状态直到有生产者添加元素到队列 ...

  6. Gitlab自动触发Jenkins构建打包

    一.目的 在部门的测试环境中,开发人员一旦向gitlab仓库提交成功代码,gitlab就会自动触发jenkins构建项目.当然在构建后还可以添加项目部署或者自动化测试的脚本.这里只针对测试环境. 二. ...

  7. buttongroup中content一次性加载的解决方法

    buttongroup一次性加载所有内容的解决方法 如下图所示: 第一步: 设置windowcontainer的autoLoad属性为false(默认情况下autoLoad属性为true,所以会加载所 ...

  8. windows下python3.6 32bit 安装django

    在Windows下python3.6安装Django1.11.3 1.首先下载地址:https://pypi.python.org/pypi/Django/1.11.3 pip install dja ...

  9. [flask 优化] 由flask-bootstrap,flask-moment引起的访问速度慢的原因及解决办法

    一周时间快速阅读了400页的<javascript基础教程>,理解了主要概念.虽然对jquery.ajax.json这些方法的运用还不熟练,但在理清了概念之后解决了一个很久之前的疑问. 我 ...

  10. K-means 算法

    本学习笔记参考自吴恩达老师机器学习公开课 聚类算法是一种无监督学习算法.k均值算法是其中应用最为广泛的一种,算法接受一个未标记的数据集,然后将数据聚类成不同的组.K均值是一个迭代算法,假设我们想要将数 ...