POJ-1273-Drainage Ditches 朴素增广路
Drainage Ditches
Description
Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's
clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. Input
The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points
for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch. Output
For each case, output a single integer, the maximum rate at which water may emptied from the pond.
Sample Input 5 4 Sample Output 50 Source |
[Submit] [Go Back] [Status]
[Discuss]
解题思路:
是一道裸的一般增广路算法的题目,就是计算水塘最大的流量排到附近的小河中。
增广路中可能含有反向弧,最后流量改进的时候对于反向弧的处理,既可以按照残留网络中的对应的正向弧那样增加流量也可以直接把这条反向弧的流量减少相应的流量。
因为我用这两种解法都能AC,说明效果是一样的。
源代码:
<span style="font-size:18px;">
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std; #define MAXN 210 struct Matrix
{
int c,f;//容量,流量
};
Matrix Edge[MAXN][MAXN];//流及容量(邻接矩阵)
int M,N;//弧的条数,顶点个数
int s,t;//源点(1),汇点(n)
int residul[MAXN][MAXN];//残留网络
int qu[MAXN*MAXN],qs,qe;//队列、队列头、队列尾
int pre[MAXN];//pre[i]为增广路上顶点的访问标志
int vis[MAXN];//BFS算法中各个顶点的访问标志
int maxflow,min_augment;//最大流流量、每次增广时的可以改进的量
void find_augment_path()//BFS寻找增广路
{
int i,cu;//cu为队列头顶点
memset(vis,0,sizeof(vis));
qs=0;qu[qs]=s;//s入队列
pre[s]=s;vis[s]=1;qe=1;
memset(residul,0,sizeof(residul));memset(pre,0,sizeof(pre));
while(qs<qe&&pre[t]==0)
{
cu=qu[qs];
for(i=1;i<=N;i++)
{
if(vis[i]==0)
{
if(Edge[cu][i].c-Edge[cu][i].f>0)
{
residul[cu][i]=Edge[cu][i].c-Edge[cu][i].f;
pre[i]=cu;qu[qe++]=i;vis[i]=1;
}
else if(Edge[i][cu].f>0)
{
residul[cu][i]=Edge[i][cu].f;
pre[i]=cu;qu[qe++]=i;vis[i]=1;
}
}
}
qs++;
}
}
void augment_flow()//计算可改进量
{
int i=t,j;//t为汇点
if(pre[i]==0)
{
min_augment=0;return;
}
j=0x7fffffff;
while(i!=s)//计算增广路上可改进量的最小值
{
if(residul[pre[i]][i]<j) j=residul[pre[i]][i];
i=pre[i];
}
min_augment=j;
}
void update_flow()//调整流量
{
int i=t;//t为汇点
if(pre[i]==0)return;
while(i!=s)
{
if(Edge[pre[i]][i].c-Edge[pre[i]][i].f>0)
Edge[pre[i]][i].f+=min_augment;
else if(Edge[i][pre[i]].f>0) Edge[pre[i]][i].f+=min_augment;//或者写成Edge[i][pre[i]]-=min_augment;
i=pre[i];
}
}
void solve()
{
s=1;t=N;
maxflow=0;
while(1)
{
find_augment_path();//BFS寻找增广路
augment_flow();//计算可改进量
maxflow+=min_augment;
if(min_augment>0) update_flow();
else return;
}
}
int main()
{
int i;
int u,v,c;
while(scanf("%d %d",&M,&N)!=EOF)
{
memset(Edge,0,sizeof(Edge));
for(i=0;i<M;i++)
{
scanf("%d %d %d",&u,&v,&c);
Edge[u][v].c+=c;
}
solve();
printf("%d\n",maxflow);
}
return 0;
}
</span>
POJ-1273-Drainage Ditches 朴素增广路的更多相关文章
- poj 1273 Drainage Ditches(最大流)
http://poj.org/problem?id=1273 Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Subm ...
- POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]
题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...
- POJ 1273 Drainage Ditches (网络最大流)
http://poj.org/problem? id=1273 Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Sub ...
- POJ 1273 Drainage Ditches题解——S.B.S.
Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 67823 Accepted: 2620 ...
- POJ 1273 Drainage Ditches
Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 67387 Accepted: 2603 ...
- Poj 1273 Drainage Ditches(最大流 Edmonds-Karp )
题目链接:poj1273 Drainage Ditches 呜呜,今天自学网络流,看了EK算法,学的晕晕的,留个简单模板题来作纪念... #include<cstdio> #include ...
- POJ 1273 Drainage Ditches(网络流dinic算法模板)
POJ 1273给出M条边,N个点,求源点1到汇点N的最大流量. 本文主要就是附上dinic的模板,供以后参考. #include <iostream> #include <stdi ...
- 网络流最经典的入门题 各种网络流算法都能AC。 poj 1273 Drainage Ditches
Drainage Ditches 题目抽象:给你m条边u,v,c. n个定点,源点1,汇点n.求最大流. 最好的入门题,各种算法都可以拿来练习 (1): 一般增广路算法 ford() #in ...
- POJ 1273 Drainage Ditches【最大流模版】
题意:现在有m个池塘(从1到m开始编号,1为源点,m为汇点),及n条有向水渠,给出这n条水渠所连接的点和所能流过的最大流量,求从源点到汇点能流过的最大流量 Dinic #include<iost ...
随机推荐
- LeetCode 277. Find the Celebrity (找到明星)$
Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist o ...
- fastDFS文件服务器迁移
在实际的项目应用中,由于服务器替换或项目变更难免会存在fastDFS文件服务器迁移的工作.本文重点介绍fastDFS文件系统在不同情况下的文件迁移处理方案. 1.迁移时IP地址不变 通过文件服务器存储 ...
- 操作系统--进程管理1--单个CPU情况
1.进程概念 进程:一个正在执行的程序:操作系统提出进程概念目的:是为了跟踪程序在执行期间的状态.而程序只是一段代码,是一个静态的概念 无法准确描述程序执行时候发生的一切.程序代码被加载进内存后就以进 ...
- 如何阻止sql注入(pdo篇)
Use prepared statements and parameterized queries. These are SQL statements that are sent to and par ...
- B. An express train to reveries
B. An express train to reveries time limit per test 1 second memory limit per test 256 megabytes inp ...
- 50 years, 50 colors
50 years, 50 colors Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- 利用 pandas 进行数据的预处理——离散数据哑编码、连续数据标准化
数据的标准化 数据标准化就是将不同取值范围的数据,在保留各自数据相对大小顺序不变的情况下,整体映射到一个固定的区间中.根据具体的实现方法不同,有的时候会映射到 [ 0 ,1 ],有时映射到 0 附近的 ...
- IOS学习——iphone X的适配
说实话,对于一个刚入门iOS两个月的新手而言,在拿到这个任务的时候整个人都是懵逼的,怎么做适配?哪些地方需要适配?该怎么做?一个个问题搞得头都大了. 首先,啥都不管,先在iPhone X上运行起来看看 ...
- Node.js 回调函数
Node.js 回调函数 Node.js 异步编程的直接体现就是回调. 异步编程依托于回调来实现,但不能说使用了回调后程序就异步化了. 回调函数在完成任务后就会被调用,Node 使用了大量的回调函数, ...
- header操作cookie
root@kl20080094:~# curl -I "http://www.xxx.com" HTTP/1.1 200 OK Server: nginx/0.8.53 Date: ...