lyk最近在研究位运算。
  它发现除了xor,or,and外还有很多运算。
  它新定义了一种运算符“#”。
  具体地,可以由4个参数来表示。
  ai,j表示
  i#j。
  其中i,j与a的值均∈[0,1]。
  当然问题可以扩展为>1的情况,具体地,可以将两个数分解为p位,然后对于每一位执行上述的位运算,再将这个二进制串转化为十进制就可以了。
  例如当 a0,0=a1,1=0,a0,1=a1,0=1时,3#4在p=3时等于7,2#3在p=4时等于1(实际上就是异或运算)。
  现在lyk想知道的是,已知一个数列b。
  它任意选取一个序列c,满足 c1<c2<...<ck,其中1≤c1且ck≤n ,这个序列的价值为 bc1 # bc2 #...# bck 的平方。
  这里我们假设k是正整数,因此满足条件的c的序列一定是 2n−1 。lyk想知道所有满足条件的序列的价值总和是多少。
  例如样例中,7个子集的价值分别为1,1,4,4,9,9,0。总和为28。
  由于答案可能很大,只需对1,000,000,007取模即可。
 Input
  第一行两个整数n(1<=n<=50000),p(1<=p<=30)。
  第二行4个数表示a0,0,a0,1,a1,0,a1,1。(这4个数都∈{0,1})
  第三行n个数bi(0<=bi<2^p)。
 Output
  一行表示答案。

  发现没法按位算贡献..然后就不会写了。

  看题解才发现自己tooyoung

考虑答案的形式,假设一个子集经过题目中描述的位运算之后值为x,那么这个子集对答案的贡献为x^2。

我们将x分解是二的幂次,若x&(1<<i)为0,则xi=0,否则xi=(1<<i)。
那么我们将x^2分解后可以得到如下形式(x0+x1+...xp-1)^2。
分解上式得到x0^2+x0x1+...+x0xk-1+x1x0+x1^2+...+x1xp-1+...+。
我们发现这个式子中最多只与两个位有关。
因此我们可以递推。
枚举i和j,表示选择了b中的第i位和第j位,令dp[0/1][0/1]表示通过lyk所给的新的位运算后,到当前枚举的位置,第i位为0/1,第j位为0/1的方案总数。
那么最后将2^(i+j)乘上dp[1][1]就是对答案的贡献了。
只需将这些贡献累计起来就是答案了。
总复杂度为p^2n。
 #include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
#include<cstdlib>
#include<bitset>
//#include<ctime>
#define ll long long
#define ull unsigned long long
#define ui unsigned int
#define d double
//#define ld long double
using namespace std;
const int maxn=,modd=;
int f[][][],a[maxn];
bool to[][];
int i,j,k,n,m,p; int ra,fh;char rx;
inline int read(){
rx=getchar(),ra=,fh=;
while((rx<''||rx>'')&&rx!='-')rx=getchar();
if(rx=='-')fh=-,rx=getchar();
while(rx>=''&&rx<='')ra=ra*+rx-,rx=getchar();return ra*fh;
} inline void M(int &x){if(x>=modd)x-=modd;}
inline int get(int p1,int p2){
bool now=,pre=,n1,n2;
f[pre][][]=/*1,*/f[pre][][]=f[pre][][]=f[pre][][]=;
for(register int i=;i<=n;i++,swap(now,pre))
n1=(a[i]>>p1)&,n2=(a[i]>>p2)&,
memcpy(f[now],f[pre],<<),M(++f[now][n1][n2]),
M(f[now][to[][n1]][to[][n2]]+=f[pre][][]),
M(f[now][to[][n1]][to[][n2]]+=f[pre][][]),
M(f[now][to[][n1]][to[][n2]]+=f[pre][][]),
M(f[now][to[][n1]][to[][n2]]+=f[pre][][]);
return f[pre][][];
}
int main(){
n=read(),p=read();
for(i=;i<;i++)for(j=;j<;j++)to[i][j]=read();
for(i=;i<=n;i++)a[i]=read();
int ans=;
for(i=;i<p;i++)for(j=;j<p;j++)ans=(ans+ 1ll*(1ll<<(i+j))%modd*get(i,j))%modd;
printf("%d\n",ans);
}

[51nod1684]子集价值的更多相关文章

  1. 51Nod 1684 子集价值 (平方和去括号技巧)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1684 题意: 新建一个位运算,求所有子集通过这个位运算后的答案的平方和是 ...

  2. 51nod 1684 子集价值

    lyk最近在研究位运算. 它发现除了xor,or,and外还有很多运算. 它新定义了一种运算符“#”. 具体地,可以由4个参数来表示. ai,j表示 i#j. 其中i,j与a的值均∈[0,1]. 当然 ...

  3. C语言不是C++的严格子集

    C语言是C++的子集吗?C++是在C语言的基础上扩展而来并包含所有C语言的内容吗? 回复: 从实用角度讲,C++属于C语言的一个超集,基本上兼容ANSI C.但是从编译角度上讲,C语言的有些特性在C+ ...

  4. Equipment UVA - 1508(子集补集)

    The Korea Defense and Science Institute, shortly KDSI, has been putting constant effort into newequi ...

  5. python 回溯法 子集树模板 系列 —— 3、0-1背包问题

    问题 给定N个物品和一个背包.物品i的重量是Wi,其价值位Vi ,背包的容量为C.问应该如何选择装入背包的物品,使得放入背包的物品的总价值为最大? 分析 显然,放入背包的物品,是N个物品的所有子集的其 ...

  6. 傻瓜方法求集合的全部子集问题(java版)

    给定随意长度的一个集合.用一个数组表示,如{"a", "b","c"},求它的全部子集.结果是{ {a}, {b}, {c}, {a,b}, ...

  7. 牛客练习赛49 B 筱玛爱阅读 (状压DP,子集生成)

    链接:https://ac.nowcoder.com/acm/contest/946/B 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262875K,其他语言5257 ...

  8. (容量超大)or(容量及价值)超大背包问题 ( 折半枚举 || 改变 dp 意义 )

    题意 : 以下两个问题的物品都只能取有且只有一次 ① 给你 N 个物品,所有物品的价值总和不会超过 5000, 单个物品的价格就可达 10^10 ,背包容量为 B ② 给你 N (N ≤ 40 ) 个 ...

  9. 背包,子集和以及 (max, +) 卷积在特殊情形下的求法

    背包,子集和以及 (max, +) 卷积在特殊情形下的求法 子集和 1:总重量不太大 有 \(n\) 个物品,每个物品重量为 \(w_i\),且 \(\sum\limits_{i} w_i=C\).你 ...

随机推荐

  1. 你的Excel表格颜色搭配的对么?

    在昨天的文章中,我们讨论了<Excel表格制作的基本九大原则>,今天我们还要继续聊聊,Excel表格的颜色搭配规则. 一个表格的美丑与否,除了基本的格式之外,如何配色也是非常关键的,如果只 ...

  2. php通过system()调用Linux命令问题

    最近在做php和linux crontab的联调,发现php在linux下的权限问题需要引起注意,调试问题的过程中发现有许多问题前人说的比较零散,我在这里汇总,顺带抛砖引玉一下. 1.$result= ...

  3. Ubuntu(Linux)下如何用源码文件安装软件

    在Ubuntu中附带了丰富的软件,这些软件一般使用图形化的自动方式(“添加/删除”或“新立得”)即可轻松安装,但是对于那些刚刚问世的新软件,Ubuntu的源中还未收录其中,这时我们就需要用到一种更通用 ...

  4. 微信小程序开发之普通链接二维码

    本文主要介绍扫普通链接二维码打开小程序, 详情请看官方文档https://mp.weixin.qq.com/debug/wxadoc/introduction/qrcode.html 配置普通链接二维 ...

  5. Kill 进程

      动态杀各种进程,谨慎操作:事例 status='sleeping'   --AUTHOR      KiNg --DATE        2016-05-30 DECLARE @SPID INT ...

  6. hadoop集群篇--从0到1搭建hadoop集群

    一.前述 本来有套好好的集群,可是不知道为什么虚拟机镜像文件损坏,结果导致集群不能用.所以不得不重新搭套集群,借此机会顺便再重新搭套吧,顺便提醒一句大家,自己虚拟机的集群一定要及时做好快照,最好装完每 ...

  7. Hive安装与配置详解

    既然是详解,那么我们就不能只知道怎么安装hive了,下面从hive的基本说起,如果你了解了,那么请直接移步安装与配置 hive是什么 hive安装和配置 hive的测试 hive 这里简单说明一下,好 ...

  8. Html5 移动端 触摸滑动事件

    以下代码经过测试  没有问题 且可以循环滑动 <!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml"& ...

  9. jquery/Js属性无效

    今天遇到个很奇葩的问题,就是checkbox的onchange时间无效,我一共写了两个checkbox的onchange事件,但就是只有一个能用,本来我以为是jquery的兼容问题,但是换成js还是不 ...

  10. hook 虚表

    PVOID* GetVtpl(PVOID lpThis, int nIndex){  return *(PVOID**)lpThis + nIndex;} PVOID HookVtpl(PVOID*  ...