联系: http://soj.me/1732

Constraints



Time Limit: 1 secs, Memory Limit: 32 MB



Description:



Alice is a beautiful and clever girl. Bob would like to play with Alice.


One day, Alice got a very big rectangle and wanted to divide it into small square pieces. Now comes a problem: if all pieces of small squares are of the same size, how big could the squares be? To Alice, it’s easy to solve the problem.
However, she was very busy, so she asked Bob to help her. You know Alice is such a lovely girl and of course Bob won’t refuse her request. But Bob is not so smart and he is especially weak in math. So he turns to you—a genius at programming.


Alice will inform Bob the length and width of the big rectangle, and Bob have to tell her the longest length for the small square. All of these numbers are in their binary representations.




Input:



The first line of the input is a positive integer. This is the number of the test cases followed. Each test case contains two integer L and W in their binary representation which tells you the length and width of the very big rectangle
(0<L, W<2^1000). There may be one or several spaces between these integers.



Output:



The output of the program should consist of one line of output for each test case. The output of each test case only contains the longest length for the small squares in its binary representation. No any redundant spaces are needed.



Sample Input:



2

100 1000

100 110

Sample Output:



100

10

分析:本题的大意就是给出两个数的二进制。求出他们的最大公约数,要用辗转相除法,因为本题的数据范围较大,须要使用高精度,假设简单套用使用辗转相除法gcd(n, m) = gcd(m, n%m)来求的话,那么就要完毕一个高精度的除法的程序;

由于本题的输入和输出都使用二进制表示。所以能够使用下面方法来求最大公约数,(仅仅须要用高精度的除法和以为运算);

本题採用的算法例如以下:

if a = 2p, b = 2q, then gcd(a, b) = 2*gcd(p, q);

if a = 2p, b = 2q+1, then gcd(a, b) = gcd(p, b);

if a = 2p+1, b = 2q, then gcd(a, b) = gcd(a, q);

if a = 2p+1, b = 2q+1, then gcd(a, b) = gcd(a-b, b) (assume a > b)

容易看出前三种情况都会导致当中一个整数减半,这样递减的速度是非常快的,并且因为输入的是以二进制的方式输入,推断a, b的方式非常easy;

那会不会连续调用第四种情况呢?答案是不会的。原因是:

当a = 2p+1, b = 2q+1时:

gcd(a, b) = gcd(a-b, b) = gcd(2(p-q), 2q+1) = gcd(p-q, 2q+1);

明显不可能出现连续调用第四种情况,时间复杂度也和标准的转转相除法一样是O(logn);

代码例如以下:

// Problem#: 1732
// Submission#: 2822044
// The source code is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License
// All Copyright reserved by Informatic Lab of Sun Yat-sen University
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#define MAXN 10005
#define RST(N)memset(N, 0, sizeof(N))
using namespace std; typedef struct Node_
{
int len;
int v[MAXN];
}Node; Node n, m;
int cas;
char str1[MAXN], str2[MAXN]; Node Tr(char *str) //把字符串转换成数字形式;
{
Node N;
int len = strlen(str);
N.len = len;
for(int i=0; i<len; i++) N.v[i] = str[len-1-i]-'0';
return N;
} bool CMP(Node n, Node m) //比較两个数的大小;
{
if(n.len < m.len) return true;
if(n.len > m.len) return false;
for(int i=n.len-1; i>=0; i--) {
if(n.v[i] < m.v[i]) return true;
else if(n.v[i] > m.v[i]) return false;
}
return false;
} Node Minus(Node n, Node m) //大整数高精度相减。注意是二进制相减;
{
Node N = n;
int borrow = 0, temp, i; //borrow为借位;
for(i=0; i<m.len; i++) { //从低位减起;
temp = N.v[i] - borrow - m.v[i];
if(temp >= 0) { //没有借位。
borrow = 0, N.v[i] = temp;
}else {
borrow = 1, N.v[i] = temp + 2;
}
}
for(; i<n.len; i++) { //处理剩余位数;(如果n > m)
temp = N.v[i] - borrow;
if(temp >= 0) {
borrow = 0, N.v[i] = temp;
}else {
borrow = 1, N.v[i] = temp + 2;
}
}
while(N.len >= 1 && !N.v[N.len-1]) N.len--;
return N;
} Node div(Node n) //大整数除2;因为是二进制,其本质就是移位;
{
Node ret;
ret.len = n.len-1;
for(int i=0; i<ret.len; i++) ret.v[i] = n.v[i+1];
return ret;
} void gcd(Node n, Node m) //求大整数的公约数;
{
long cnt = 0;
while(n.len && m.len) {
if(n.v[0]) {
if(m.v[0]) { //a = 2p+1, b = 2q+1 情况
if(CMP(n, m)) m = Minus(m, n);
else n = Minus(n, m);
}else m = div(m); //a = 2p+1, b = 2q情况;
}else {
if(m.v[0]) n = div(n); //a = 2p, b = 2q+1情况。
else {
n = div(n), m = div(m); //a = 2p, b = 2q情况。
cnt++;
}
}
}
if(m.len) for(int i=m.len-1; i>=0; i--) printf("%d", m.v[i]); //输出结果;
else for(int i=n.len-1; i>=0; i--) printf("%d", n.v[i]);
while(cnt--) printf("0");
printf("\n");
} int main()
{
scanf("%d", &cas);
while(cas--) {
scanf("%s %s", str1, str2);
n = Tr(str1), m = Tr(str2);
gcd(n, m);
}
return 0;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

Sicily 1732 Alice and Bob (二进制最大公约数)的更多相关文章

  1. CodeForces 346A Alice and Bob (数学最大公约数)

    题意:有一堆数,然后有两个人轮流从中取出两个数,这两个数的差的绝对值不在这个集合,然后把这个数放进这个集合,如果哪个人不能拿了,就是输了,问你谁赢. 析:当时连题意都没看好,以为拿出两个数,就不放回了 ...

  2. SDUT 2608 Alice and Bob (巧妙的二进制)

    Alice and Bob Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 Alice and Bob like playing ...

  3. Alice and Bob(2013年山东省第四届ACM大学生程序设计竞赛)

    Alice and Bob Time Limit: 1000ms   Memory limit: 65536K 题目描述 Alice and Bob like playing games very m ...

  4. sdutoj 2608 Alice and Bob

    http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2608 Alice and Bob Time L ...

  5. 位运算 2013年山东省赛 F Alice and Bob

    题目传送门 /* 题意: 求(a0*x^(2^0)+1) * (a1 * x^(2^1)+1)*.......*(an-1 * x^(2^(n-1))+1) 式子中,x的p次方的系数 二进制位运算:p ...

  6. 2013年山东省第四届ACM大学生程序设计竞赛 Alice and Bob

      Alice and Bob Time Limit: 1000ms   Memory limit: 65536K 题目描述 Alice and Bob like playing games very ...

  7. ny788 又见Alice and Bob

    又见Alice and Bob 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 集训生活如此乏味,于是Alice和Bob发明了一个新游戏.规则如下:首先,他们得到一个 ...

  8. 2013年山东省第四届ACM大学生程序设计竞赛E题:Alice and Bob

    题目描述 Alice and Bob like playing games very much.Today, they introduce a new game. There is a polynom ...

  9. 2016中国大学生程序设计竞赛 - 网络选拔赛 J. Alice and Bob

    Alice and Bob Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

随机推荐

  1. Andorid Async-HttpClient阅览

    Async-httpclient它是一个用于Android应用程序开发http访问开源框架.开源GitHub在,因为今天GitHub下载没有看到.我在这里提供下载地址.是之前从GitHub上下载的,版 ...

  2. NET5 Web应用程序

    ASP.NET5 Web应用程序结构 本文参考ASP.NET5 官方文档 Understanding ASP.NET 5 Web Apps,加入了一些个人理解,理解不对的地方希望大家能指出,互相学习. ...

  3. Javascript作用域问题的构造函数的变量

    构造函数new对于使用.代表创建对象.此外,它可以被用作普通的函数调用,因为它也是一个功能. function Person(name) { this.name=name; } Person(12); ...

  4. 如何使盘ISO图像文件

    原创作品.从 "深蓝blog" 博客,欢迎转载,请务必注明转载的来源,权法律责任. 深蓝的blog:http://blog.csdn.net/huangyanlong/articl ...

  5. WindowState注意事项

    本文将分析具体WindowState个别关键的成员变量和成员函数. Window #3 Window{20dd178e u0 com.android.mms/com.android.mms.ui.Co ...

  6. 【转】linux建立软链接

    实例:ln -s /home/gamestat    /gamestat linux下的软链接类似于windows下的快捷方式 ln -s a b 中的 a 就是源文件,b是链接文件名,其作用是当进入 ...

  7. [Apache Spark源代码阅读]天堂之门——SparkContext解析

    略微了解Spark源代码的人应该都知道SparkContext,作为整个Project的程序入口,其重要性不言而喻,很多大牛也在源代码分析的文章中对其做了非常多相关的深入分析和解读.这里,结合自己前段 ...

  8. asm 盘头损失,破坏

    BUG 14693394 – ORA-15196: INVALID ASM BLOCK HEADER [KFC.C:26076] [ENDIAN_KFBH] BUG 14758001 – ORA-15 ...

  9. 电脑知识--Windows一片

    .com档 Dos可执行命令文件,一般小于64kb, .com文件包括程序的一个绝对映像.就是说,为了执行程序准确的处理器指令和内存中的数据.Ms-Dos通过直接把该映像从文件复制到内存. 而 载入. ...

  10. DWR入门实例(二)

    DWR(Direct Web Remoting) DWR is a Java library that enables Java on the server and JavaScript in a b ...