题意:定义Concatenate(1,N)=1234567……n。比如Concatenate(1,13)=12345678910111213。给定n和m,求Concatenate(1,n)%m。 (1=<n<=10^18,1<=m<=10^9)

思路:令f[n]表示Concatenate(1,n)。那么有:

f[i]=f[i-1]*10+(i-1)+1   1<=i<=9

f[i]=f[i-1]*100+(i-1)+1  10<=i<=99

……

因此可用矩阵加速:

这样按位数分段来矩阵快速幂1~9,10~99,100~999......这里构造矩阵要注意细节;设上面两个矩阵分别为F,G;则要从F0开始;

这样刚好Fn=G^n*F0;如果是G^(n-1)*F1=Fn的话,在分段过程中会出错的(原因自己尽量想想)。

而F0={0,0,1},所以Fn=0*Gn.m[0][0]+0*Gn.m[0][1]+1*Gn.m[2][0]=Gn.m[2][0].

#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define inf 1<<30
#define N 100010
using namespace std;
struct matrix
{
LL m[][];
}ans;
LL dig[],n,mod;
matrix mult(matrix a,matrix b)
{
matrix c;
memset(c.m,,sizeof(c.m));
for(int i=;i<;i++)
for(int k=;k<;k++)
{
if(a.m[i][k]==)continue;
for(int j=;j<;j++)
{
if(b.m[k][j]==)continue;
c.m[i][j]+=a.m[i][k]*b.m[k][j]%mod;
c.m[i][j]%=mod;
}
}
return c;
}
matrix quickmod(matrix a,LL n)
{
matrix temp;
memset(temp.m,,sizeof(temp.m));
for(int i=;i<;i++)temp.m[i][i]=;
while(n)
{
if(n&)temp=mult(temp,a);
a=mult(a,a);
n>>=;
}
return temp;
}
matrix solve(LL n,LL t)
{
matrix x;
x.m[][]=t%mod;x.m[][]=;x.m[][]=;
x.m[][]=;x.m[][]=;x.m[][]=;
x.m[][]=;x.m[][]=;x.m[][]=;
return quickmod(x,n);
} int main()
{
dig[]=;
for(int i=;i<=;i++)dig[i]=dig[i-]*;
while(scanf("%lld%lld",&n,&mod)!=EOF)
{
memset(ans.m,,sizeof(ans.m));
for(int i=;i<;i++)
ans.m[i][i]=;
for(int i=;;i++)
{
LL left=dig[i-];
LL right=min(n,dig[i]-);
ans=mult(ans,solve(right-left+,dig[i]));
if(right==n)break;
}
printf("%lld\n",ans.m[][]);
}
}

bzoj(矩阵快速幂)的更多相关文章

  1. BZOJ 2510: 弱题( 矩阵快速幂 )

    每进行一次, 编号为x的数对x, 和(x+1)%N都有贡献 用矩阵快速幂, O(N3logK). 注意到是循环矩阵, 可以把矩阵乘法的复杂度降到O(N2). 所以总复杂度就是O(N2logK) --- ...

  2. BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )

    写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...

  3. BZOJ 2875: [Noi2012]随机数生成器( 矩阵快速幂 )

    矩阵快速幂...+快速乘就OK了 ----------------------------------------------------------------------------------- ...

  4. BZOJ 1009 :[HNOI2008]GT考试(KPM算法+dp+矩阵快速幂)

    这道到是不用看题解,不过太经典了,早就被剧透一脸了 这道题很像ac自动机上的dp(其实就是) 然后注意到n很大,节点很小,于是就可以用矩阵快速幂优化了 时间复杂度为o(m^3 *log n); 蒟蒻k ...

  5. [bzoj 1409] Password 矩阵快速幂+欧拉函数

    考试的时候想到了矩阵快速幂+快速幂,但是忘(bu)了(hui)欧拉定理. 然后gg了35分. 题目显而易见,让求一个数的幂,幂是斐波那契数列里的一项,考虑到斐波那契也很大,所以我们就需要欧拉定理了 p ...

  6. BZOJ.4180.字符串计数(后缀自动机 二分 矩阵快速幂/倍增Floyd)

    题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设 ...

  7. BZOJ 1009 [HNOI2008]GT考试 (KMP + 矩阵快速幂)

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4266  Solved: 2616[Submit][Statu ...

  8. BZOJ 2004 公交线路(状压DP+矩阵快速幂)

    注意到每个路线相邻车站的距离不超过K,也就是说我们可以对连续K个车站的状态进行状压. 然后状压DP一下,用矩阵快速幂加速运算即可. #include <stdio.h> #include ...

  9. 【BZOJ】1875: [SDOI2009]HH去散步 矩阵快速幂

    [题意]给定n个点m边的无向图,求A到B恰好经过t条边的路径数,路径须满足每条边都和前一条边不同.n<=20,m<=60,t<=2^30. [算法]矩阵快速幂 [题解]将图的邻接矩阵 ...

随机推荐

  1. VS2010+QT4.8.5 +FastReport教程

    如需转载请标明出处:http://blog.csdn.net/itas109 採用QT 的QAxObject方式执行FastReport特别麻烦,并且无法在编译的时候知道代码是否正确,并且大部分的函数 ...

  2. Axure基础系列教程

     Axure rp 6.5的软件安装.汉化与注册  认识Axure的软件界面 生成网页原型的三种方法 如何关闭IE浏览器在生成原型时候的安全警告 在chrome中使用axure生成原型的问题 站点地图 ...

  3. redhat6.3+oracle11GR2 单库 安装规划

    oracle11g单实例安装+redhat6.3   规划 一.查看环境 [root@JSCS78DB dev]# cat /etc/redhat-release Red Hat Enterprise ...

  4. Codility上的问题 (17) PI 2012

    这个题比较简单,给定一个整数数组,对每个元素,求出和它最近比它大的数的距离(下标绝对值),如果没有比它大的数,认为距离是0. 数组元素个数 N [0..50000],数组元素范围[-10^9, +10 ...

  5. Head First PHP &amp;MySQL学习笔记

      近期一段时间在学习PHP,买了<Head First PHP&MySQL>中文版这本书,之前买过<Head First设计模式>,感觉这系列的书籍整体来说非常不错. ...

  6. ABAP 向上取整和向下取整 CEIL & FLOOR

    下面是一段关于CEIL 和 FLOOR 的代码 DATA:a TYPE mseg-menge, b TYPE mseg-menge, c TYPE mseg-menge. a = '1.36'. b ...

  7. Solarized Colorscheme for IntelliJ IDEA

    Solarized Colorscheme for IntelliJ IDEA Original Solarized color scheme developed by Ethan Schoonove ...

  8. linux脚本初体验

    前言 第一次写linux脚本,有点紧张. 1. 写一个寻找特定用户的脚本文件? #! /bin/sh who | grep $1 其中脚本第一行用来告诉kernel去使用/bin/sh来解释这个脚本: ...

  9. Uva - 11383 - Golden Tiger Claw

    题意:一个N*N的矩阵,第i行第j列的元素大小为w[i][j],每行求一个数row[i],每列求一个数col[j],使得row[i] + col[j] >= w[i][j],且所有的row[]与 ...

  10. 了解sota字符界面(章节4.1)

    4 SOTA操作 4.1 SOTA字符界面 sotaCC是字符界面管理sota系统程序 . 在/.../sota/bin/目录下,启动sotaCC.在终端的该目录下输入指令“./sotaCC”,启动s ...