mutilprocess简介

像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多。

import multiprocessing

def worker(num):
"""thread worker function"""
print 'Worker:', num
return if __name__ == '__main__':
jobs = []
for i in range(5):
p = multiprocessing.Process(target=worker, args=(i,))
jobs.append(p)
p.start()

简单的创建进程

确定当前的进程,即是给进程命名,方便标识区分,跟踪

import multiprocessing
import time def worker():
name = multiprocessing.current_process().name
print name, 'Starting'
time.sleep(2)
print name, 'Exiting' def my_service():
name = multiprocessing.current_process().name
print name, 'Starting'
time.sleep(3)
print name, 'Exiting' if __name__ == '__main__':
service = multiprocessing.Process(name='my_service',
target=my_service)
worker_1 = multiprocessing.Process(name='worker 1',
target=worker)
worker_2 = multiprocessing.Process(target=worker) # default name worker_1.start()
worker_2.start()
service.start()

守护进程就是不阻挡主程序退出,自己干自己的 mutilprocess.setDaemon(True)就这句等待守护进程退出,要加上join,join可以传入浮点数值,等待n久就不等了

import multiprocessing
import time
import sys def daemon():
name = multiprocessing.current_process().name
print 'Starting:', name
time.sleep(2)
print 'Exiting :', name def non_daemon():
name = multiprocessing.current_process().name
print 'Starting:', name
print 'Exiting :', name if __name__ == '__main__':
d = multiprocessing.Process(name='daemon',
target=daemon)
d.daemon = True n = multiprocessing.Process(name='non-daemon',
target=non_daemon)
n.daemon = False d.start()
n.start() d.join(1)
print 'd.is_alive()', d.is_alive()
n.join()

守护进程

最好使用 poison pill,强制的使用terminate()注意 terminate之后要join,使其可以更新状态

import multiprocessing
import time def slow_worker():
print 'Starting worker'
time.sleep(0.1)
print 'Finished worker' if __name__ == '__main__':
p = multiprocessing.Process(target=slow_worker)
print 'BEFORE:', p, p.is_alive() p.start()
print 'DURING:', p, p.is_alive() p.terminate()
print 'TERMINATED:', p, p.is_alive() p.join()
print 'JOINED:', p, p.is_alive()

终止进程

  1. == 0 未生成任何错误
  2. 0 进程有一个错误,并以该错误码退出
  3. < 0 进程由一个-1 * exitcode信号结束
import multiprocessing
import sys
import time def exit_error():
sys.exit(1) def exit_ok():
return def return_value():
return 1 def raises():
raise RuntimeError('There was an error!') def terminated():
time.sleep(3) if __name__ == '__main__':
jobs = []
for f in [exit_error, exit_ok, return_value, raises, terminated]:
print 'Starting process for', f.func_name
j = multiprocessing.Process(target=f, name=f.func_name)
jobs.append(j)
j.start() jobs[-1].terminate() for j in jobs:
j.join()
print '%15s.exitcode = %s' % (j.name, j.exitcode)

进程的退出状态

方便的调试,可以用logging

import multiprocessing
import logging
import sys def worker():
print 'Doing some work'
sys.stdout.flush() if __name__ == '__main__':
multiprocessing.log_to_stderr()
logger = multiprocessing.get_logger()
logger.setLevel(logging.INFO)
p = multiprocessing.Process(target=worker)
p.start()
p.join()

日志

利用class来创建进程,定制子类

import multiprocessing

class Worker(multiprocessing.Process):

    def run(self):
print 'In %s' % self.name
return if __name__ == '__main__':
jobs = []
for i in range(5):
p = Worker()
jobs.append(p)
p.start()
for j in jobs:
j.join()

派生进程

import multiprocessing

class MyFancyClass(object):

    def __init__(self, name):
self.name = name def do_something(self):
proc_name = multiprocessing.current_process().name
print 'Doing something fancy in %s for %s!' % \
(proc_name, self.name) def worker(q):
obj = q.get()
obj.do_something() if __name__ == '__main__':
queue = multiprocessing.Queue() p = multiprocessing.Process(target=worker, args=(queue,))
p.start() queue.put(MyFancyClass('Fancy Dan')) # Wait for the worker to finish
queue.close()
queue.join_thread()
p.join() import multiprocessing
import time class Consumer(multiprocessing.Process): def __init__(self, task_queue, result_queue):
multiprocessing.Process.__init__(self)
self.task_queue = task_queue
self.result_queue = result_queue def run(self):
proc_name = self.name
while True:
next_task = self.task_queue.get()
if next_task is None:
# Poison pill means shutdown
print '%s: Exiting' % proc_name
self.task_queue.task_done()
break
print '%s: %s' % (proc_name, next_task)
answer = next_task()
self.task_queue.task_done()
self.result_queue.put(answer)
return class Task(object):
def __init__(self, a, b):
self.a = a
self.b = b
def __call__(self):
time.sleep(0.1) # pretend to take some time to do the work
return '%s * %s = %s' % (self.a, self.b, self.a * self.b)
def __str__(self):
return '%s * %s' % (self.a, self.b) if __name__ == '__main__':
# Establish communication queues
tasks = multiprocessing.JoinableQueue()
results = multiprocessing.Queue() # Start consumers
num_consumers = multiprocessing.cpu_count() * 2
print 'Creating %d consumers' % num_consumers
consumers = [ Consumer(tasks, results)
for i in xrange(num_consumers) ]
for w in consumers:
w.start() # Enqueue jobs
num_jobs = 10
for i in xrange(num_jobs):
tasks.put(Task(i, i)) # Add a poison pill for each consumer
for i in xrange(num_consumers):
tasks.put(None) # Wait for all of the tasks to finish
tasks.join() # Start printing results
while num_jobs:
result = results.get()
print 'Result:', result
num_jobs -= 1

python进程间传递消息

Event提供一种简单的方法,可以在进程间传递状态信息。事件可以切换设置和未设置状态。通过使用一个可选的超时值,时间对象的用户可以等待其状态从未设置变为设置。

import multiprocessing
import time def wait_for_event(e):
"""Wait for the event to be set before doing anything"""
print 'wait_for_event: starting'
e.wait()
print 'wait_for_event: e.is_set()->', e.is_set() def wait_for_event_timeout(e, t):
"""Wait t seconds and then timeout"""
print 'wait_for_event_timeout: starting'
e.wait(t)
print 'wait_for_event_timeout: e.is_set()->', e.is_set() if __name__ == '__main__':
e = multiprocessing.Event()
w1 = multiprocessing.Process(name='block',
target=wait_for_event,
args=(e,))
w1.start() w2 = multiprocessing.Process(name='nonblock',
target=wait_for_event_timeout,
args=(e, 2))
w2.start() print 'main: waiting before calling Event.set()'
time.sleep(3)
e.set()
print 'main: event is set'

进程间信号传递

Python多进程,一般的情况是Queue来传递。

from multiprocessing import Process, Queue

def f(q):
q.put([42, None, 'hello']) if __name__ == '__main__':
q = Queue()
p = Process(target=f, args=(q,))
p.start()
print q.get() # prints "[42, None, 'hello']"
p.join()

Queue

import Queue
import threading
import time exitFlag = 0 class myThread (threading.Thread):
def __init__(self, threadID, name, q):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.q = q
def run(self):
print "Starting " + self.name
process_data(self.name, self.q)
print "Exiting " + self.name def process_data(threadName, q):
while not exitFlag:
queueLock.acquire()
if not workQueue.empty():
data = q.get()
queueLock.release()
print "%s processing %s" % (threadName, data)
else:
queueLock.release()
time.sleep(1) threadList = ["Thread-1", "Thread-2", "Thread-3"]
nameList = ["One", "Two", "Three", "Four", "Five"]
queueLock = threading.Lock()
workQueue = Queue.Queue(10)
threads = []
threadID = 1 # Create new threads
for tName in threadList:
thread = myThread(threadID, tName, workQueue)
thread.start()
threads.append(thread)
threadID += 1 # Fill the queue
queueLock.acquire()
for word in nameList:
workQueue.put(word)
queueLock.release() # Wait for queue to empty
while not workQueue.empty():
pass # Notify threads it's time to exit
exitFlag = 1 # Wait for all threads to complete
for t in threads:
t.join()
print "Exiting Main Thread"

多线程优先队列Queue

多进程使用Queue通信的例子

import time
from multiprocessing import Process,Queue MSG_QUEUE = Queue(5) def startA(msgQueue):
while True:
if msgQueue.empty() > 0:
print ('queue is empty %d' % (msgQueue.qsize()))
else:
msg = msgQueue.get()
print( 'get msg %s' % (msg,))
time.sleep(1) def startB(msgQueue):
while True:
msgQueue.put('hello world')
print( 'put hello world queue size is %d' % (msgQueue.qsize(),))
time.sleep(3) if __name__ == '__main__':
processA = Process(target=startA,args=(MSG_QUEUE,))
processB = Process(target=startB,args=(MSG_QUEUE,)) processA.start()
print( 'processA start..')

主进程定义了一个Queue类型的变量,并作为Process的args参数传给子进程processA和processB,两个进程一个向队列中写数据,一个读数据。

Python多进程multiprocessing使用示例的更多相关文章

  1. Python 多进程 multiprocessing.Pool类详解

    Python 多进程 multiprocessing.Pool类详解 https://blog.csdn.net/SeeTheWorld518/article/details/49639651

  2. Python 多进程multiprocessing

    一.python多线程其实在底层来说只是单线程,因此python多线程也称为假线程,之所以用多线程的意义是因为线程不停的切换这样比串行还是要快很多.python多线程中只要涉及到io或者sleep就会 ...

  3. python ---多进程 Multiprocessing

    和 threading 的比较 多进程 Multiprocessing 和多线程 threading 类似, 他们都是在 python 中用来并行运算的. 不过既然有了 threading, 为什么 ...

  4. python多进程-----multiprocessing包

    multiprocessing并非是python的一个模块,而是python中多进程管理的一个包,在学习的时候可以与threading这个模块作类比,正如我们在上一篇转载的文章中所提,python的多 ...

  5. python多进程multiprocessing Pool相关问题

    python多进程想必大部分人都用到过,可以充分利用多核CPU让代码效率更高效. 我们看看multiprocessing.pool.Pool.map的官方用法 map(func, iterable[, ...

  6. 操作系统OS,Python - 多进程(multiprocessing)、多线程(multithreading)

    多进程(multiprocessing) 参考: https://docs.python.org/3.6/library/multiprocessing.html 1. 多进程概念 multiproc ...

  7. python多进程(multiprocessing)

    最近有个小课题,需要用到双进程,翻了些资料,还算圆满完成任务.记录一下~ 1.简单地双进程启动 同时的调用print1()和print2()两个打印函数,代码如下: #/usr/bin/python ...

  8. python多进程multiprocessing模块中Queue的妙用

    最近的部门RPA项目中,小爬为了提升爬虫性能,使用了Python中的多进程(multiprocessing)技术,里面需要用到进程锁Lock,用到进程池Pool,同时利用map方法一次构造多个proc ...

  9. Python(多进程multiprocessing模块)

    day31 http://www.cnblogs.com/yuanchenqi/articles/5745958.html 由于GIL的存在,python中的多线程其实并不是真正的多线程,如果想要充分 ...

随机推荐

  1. CodeForces 667C Reberland Linguistics

    $dp$. 题意中有一个词组:$in$ $a$ $row$,是连续的意思.... 因此这题只要倒着$dp$一下就可以了.$f[i][0]$表示从$i$位置往后割两个能否割,$f[i][1]$表示从$i ...

  2. Epidemic in Monstropolis

    Epidemic in Monstropolis 题目链接:http://codeforces.com/contest/733/problem/C 贪心 新序列的m个数肯定是由原序列的连续的m个子序列 ...

  3. uoj 55 紫荆花之恋 动态点分治+替罪羊式重构+treap

    每插入一个点,直接把它当做重心插入原树,当做是动态点分树一样维护 但这样深度会越来越大,所以我们用类似替罪羊的方法 当树失去平衡时,对子树进行一次点分,保证复杂度 #include <cstdi ...

  4. PHP微信支付开发之扫描支付(模式二)后如何回调

    其实在写这篇文章的时候感觉自己已经落伍了,不过笔者在百度上搜索"微信支付开发之扫描支付(模式二)后如何回调"寻找答案时,发现依旧有很多朋友没有解决这个问题,所以就把自己的解决思路分 ...

  5. [Q]pdfFactory打印机内存不能为read的问题

    运行环境:xp系统,AutoCAD2007 1. 使用pdfFactory打印文本文件没有问题. 2. 使用CAD打印的时候出现问题,使用CAD自带的PLOT命令打印也出现相同的问题. 3. 使用相同 ...

  6. AutoCAD 2009及以上 32位&64位 官方原版下载地址

    AutoCAD 2017 AutoCAD 2017 简体中文版 32位 http://trial2.autodesk.com/NET17SWDLD/2017/ACD/DLM/AutoCAD_2017_ ...

  7. 5.MyBaits调用存储过程

    1.创建一个javaweb项目MyBatis_Part4_Procedure 2.在src下创建procedure.sql文件 --创建表 create table p_user( id number ...

  8. C# 正则表达式 结合 委托

    使用正则表达式匹配字符串的同时,使用委托事件,处理每一个匹配项 示例代码: string msg = "我的邮箱是zxh@itcast.cn的邮箱是yzk365@chezhihui.com减 ...

  9. 如何在IIS8.5上面部署php

    一.开启,设置win8.1自带的IIS 8.5组件服务器. 进入控制面板,选择程序和功能,打开或关闭Windows 功能,找到Internet information services,分别开启FTP ...

  10. django urls.py更改遇到问题

    Q:TypeError: view must be a callable or a list/tuple in the case of include() A:django 1.10版本改了写法了.首 ...